LETTER

Exome sequencing reveals a novel partial deletion in the progranulin gene causing primary progressive aphasia

In 2005, we reported a case of familial primary progressive aphasia (PPA) in this journal. The individual in question had a family history of frontotemporal dementia (FTD), her brother having behavioural variant FTD shown to be due to tau-negative, ubiquitin-positive (FTLD-U) pathology at postmortem. She was followed as part of a research programme from the age of 51 years, first developing symptoms of progressive speech disturbance at the age of 53 years. We were able to demonstrate the emergence of neuropsychometric deficits and brain atrophy prior to symptom onset. Through the use of voxel compression mapping, we showed the emergence of very focal, presymptomatic regional atrophy initially almost entirely confined to the pars opercularis (figure 1A). Over time, the atrophy spread through the frontal and temporal lobes to affect the parietal lobe and then the right frontal lobe. Subsequent analysis has shown increase in left hemisphere volume loss preceded and remained more prominent than the right throughout the disease course (figure 1B).

At the time of publication, mutations in the microtubule-associated protein tau (MAPT) were the only known genetic cause of disorders within the FTD spectrum, and screening for MAPT mutations was negative. Since then, the progranulin (GRN) and C9ORF72 genes have been shown to be major causes of familial FTD. Her brother’s pathology was subsequently reanalysed and reclassified as FTLD-transactive response DNA-binding protein (TDP) type A pathology, consistent with either a GRN or C9ORF72 mutation. However, conventional analyses failed to disclose mutations in either of these genes in this family.

In order to investigate this further, DNA from her brother underwent exome sequencing, performed on genomic DNA using Agilent SureSelect Human All Exon v2 target enrichment kit. Sequencing was performed on an Illumina HiSeq2000 and achieved an average 30-fold depth-of-coverage of target sequence. ExomeDepth compares the read depth data between a test sample and an aggregate reference set that combines multiple exomes matched to selected exons with the test sample for technical variability (Software freely available at: http://cran.r-project.org/web/packages/ExomeDepth/index.html). Analysis demonstrated a GRN gene deletion. The red crosses (figure 2) show the ratio of observed/expected number of reads for the test sample. The grey shaded region shows the estimated 99% CI for this observed ratio in the absence of copy number variation (CNV) call. The presence of contiguous exons with read count ratio located outside of the CI is indicative of a heterozygous deletion in the GRN gene. GRN exons 0, 2, 5, 9 and 11 were subsequently probed for copy number variation using multiplex ligation-dependent probe amplification (MLPA) analysis with the Medical Research Council (MRC) Holland kit P275, which is routinely used for assessing GRN deletions. This confirmed the presence of a novel heterozygous deletion of exons 2–11. Test results show the 5’ untranslated region of the gene was present, but could not determine if exon 12 of GRN was also deleted. The same deletion was detected in the proband using MLPA analysis.

While progranulin mutations were not known to cause frontotemporal lobar degeneration at the time of our original report, the clinical features that emerged during the course of her illness would now be recognised as being fairly characteristic. Progranulin mutations are usually associated with behavioural variant FTD or PPA with combinations of these presentations recognised within the same family.

Neuropsychologically, patients often have executive dysfunction and early parietal lobe deficits, with PPA patients having a non-fluent aphasia with a prominent anomia. Imaging studies in patients with established disease typically show prominent asymmetrical atrophy affecting frontal, temporal and parietal lobes consistent with neuropsychological findings. Finally, the pathology, type A TDP-43, would be consistent with that seen in progranulin mutations (and also C9ORF72 expansions).

This case serves to illustrate a number of important points. First, progranulin

Figure 1 MRI changes in the proband: (A) sagittal MRI showing focal anterolateral left frontal lobe atrophy, particularly centred around the pars opercularis, using voxel compression mapping between the first and second scans (3.4 and 2.1 years prior to symptom onset) (reprinted from Janssen et al); (B) changes in left and right hemispheric volume over time.
found with usual screening methods for
discover large-scale mutations, such as the
negative in this case demonstrates the
that conventional progranulin testing was
trials in these disorders. Finally, the fact
measures for presymptomatic therapeutic
atrophy may therefore be useful outcome
precedes symptom onset in genetically
this case shows that focal brain atrophy
as with other neurodegenerative diseases,
autosomal-dominant family history. Third,
as with other neurodegenerative diseases,
this case shows that focal brain atrophy
precedes symptom onset in genetically
determined forms of FTD; rates of
atrophy may therefore be useful outcome
measures for presymptomatic therapeutic
trials in these disorders. Finally, the fact
that conventional progranulin testing was
negative in this case demonstrates the
power of exome sequencing as a tool to
discover large-scale mutations, such as the
partial deletion seen here, that may not be
found with usual screening methods for
small-scale changes.

Jonathan D Rohrer,1 Jonathan Beck,2
Vincent Plagnol,3 Elizabeth Gordon,4
Tammaryn Lashley,4 Tamas Revesz,4
John C Janssen,2 Nick C Fox,1 Jason D Warren,1
Martin N Rossor,2 Simon Mead,2
Jonathan M Schott1

1Dementia Research Centre, Department of
Neurodegenerative Disease, UCL Institute of Neurology,
London, UK
2MRC Prion Unit, Department of Neurodegenerative
Disease, UCL Institute of Neurology, London, UK
3Department of Statistics, Institute of Genetics,
University College London, UK
4Queen Square Brain Bank, UCL Institute of Neurology,
London, UK
5Department of Neurology, Chelsea and Westminster
Hospital, London, UK

Correspondence to Dr Jonathan M Schott, Institute of
Neurology – Dementia Research Centre, Queen
Square, London WC1N 3BG, UK;
j.schott@ucl.ac.uk

Acknowledgements This work was funded by the
Medical Research Council UK. The Dementia Research
Centre is an Alzheimer’s Research UK Co-ordinating
Centre and has also received equipment funded by
Alzheimer’s Research UK and Brain Research Trust. JR
is an NIHR clinical lecturer, MR and NF are NIHR senior
investigators, JDW is supported by a Wellcome Trust
Senior Clinical Fellowship, and are researchers at the
NIHR Queen Square Dementia BRU. JS is an NIHR
Clinical Senior Lecturer. This work was supported by the
NIHR Queen Square Dementia BRU.

Contributors JDR wrote the draft of the manuscript
and analysed the imaging data. JB, VP and SM
performed the genetic analyses. TL and TR performed
the pathological analyses. EG performed imaging
analyses. JCI, IMS, MNR, JDW and NCF performed
patient evaluation. All authors reviewed and
contributed to the final manuscript.

Competing interests None.

Ethics approval Ethical approval for the study was
obtained from the National Hospital for Neurology and
Neurosurgery Local Research Ethics Committee.

Provenance and peer review Not commissioned;
externally peer reviewed.

REFERENCES
1 Janssen JC, Schott JM, Cipolotti L, et al. Mapping
the progression and onset of atrophy in familial
frontotemporal lobar degeneration. J Neurol
2 Rohrer JD, Warren JD. Phenotypic signatures of
genetic frontotemporal dementia. Curr Opin Neurol
3 Rohrer JD, Lashley T, Schott JM, et al. Clinical and
neuropsychometric signatures of tissue pathology in
frontotemporal lobar degeneration. Brain 2011;134
Pt 9):2565–81.
4 Beck J, Rohrer JD, Campbell T, et al. A distinct
clinical, neuropsychological and radiological
phenotype is associated with progranulin gene
mutations in a large UK series. Brain 2008;
5 Rohrer JD, Guerreiro R, Vandenberghe J, et al. The
heritability and genetics of frontotemporal lobar
6 Mahoney CJ, Beck J, Rohrer JD, et al. Frontotemporal
dementia with the C9ORF72 hexanucleotide repeat
expansion: clinical, neuroanatomical and
neuropsychological features. Brain 2012;135(Pt
7 Sergunin OI, Davidson AE, Mackay DS, et al.
Biallelic mutations in PLA2G5, encoding group V
phospholipase A2, cause benign fleck retina. Am J
for read count data in exome sequencing:
experiments and implications for copy number
Progranulin locus deletion in frontotemporal
10 Skoglund L, Ingvar S, Matsui T, et al. No evidence
of PGRN or MAPT gene dosage alterations in a
collection of patients with frontotemporal lobar
degeneration. Dement Geriatr Cogn Disord
11 Rohrer JD, Ridgeway GR, Modat M, et al. Distinct
profiles of brain atrophy in frontotemporal lobar
degeneration caused by progranulin and tau