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ABSTRACT
Cerebral vasospasm has traditionally been regarded as
an important cause of delayed cerebral ischaemia (DCI)
which occurs after aneurysmal subarachnoid
haemorrhage, and often leads to cerebral infarction and
poor neurological outcome. However, data from recent
studies argue against a pure focus on vasospasm as the
cause of delayed ischaemic complications. Findings that
marked reduction in the incidence of vasospasm does
not translate to a reduction in DCI, or better outcomes
has intensified research into other possible mechanisms
which may promote ischaemic complications. Early brain
injury and cell death, blood-brain barrier disruption and
initiation of an inflammatory cascade, microvascular
spasm, microthrombosis, cortical spreading
depolarisations and failure of cerebral autoregulation,
have all been implicated in the pathophysiology of DCI.
This review summarises the current knowledge about the
mechanisms underlying the development of DCI.
Furthermore, it aims to describe and categorise the
known pharmacological treatment options with respect
to the presumed mechanism of action and its role in
DCI.

INTRODUCTION
The incidence of spontaneous subarachnoid haem-
orrhage (SAH) is around 6–11 per 100 000
persons per year.1 2 Due to the relatively young age
of the affected population and the high rates of dis-
ability, the burden to society is high, with a
reported loss of productive years similar to ischae-
mic and haemorrhagic strokes.3

Over the past two decades, the advancement of
understanding of the pathophysiology of SAH and
its squelae has led to a considerable reduction in
the mortality.4 Data suggest that this reduction may
be related to new management protocols directed
at early aneurysm repair, and aggressive manage-
ment of acute hydrocephalus and delayed cerebral
ischaemia (DCI).4 5 Despite these advances, about
30% of patients who survive following SAH will
not regain full independence,6 while 69% will
report a reduced quality of life.7

DCI is recognised as one of the leading causes of
unfavourble outcome following SAH.8 Understanding
the exact mechanisms which lead to DCI is important
in the development of new treatment strategies.
Furthermore, with multiple therapies being tested, it

is important to understand the background behind
the interventions, as well as the current state of evi-
dence for their likely benefit.

DCI
DCI has been shown to occur in 30–40% of
patients with SAH.8 9–11 The pathophysiology of
DCI is complex and not fully understood. Until
recently, the prevailing view has been held that
there is a direct link between arterial narrowing
seen on angiography and clinical symptoms of
brain ischaemia. However, recent data argue that
this relationship is inconsistent. While angiography
and perfusion imaging often demonstrate vaso-
spasm and associated perfusion deficits, this is by
no means invariable, and in many cases, DCI may
be a diagnosis of exclusion without clear radio-
logical findings.

CEREBRAL VASOSPASM
Ecker and Riemenschneider12 first documented the
presence of cerebral vasospasm (CVS) in relation to
a ruptured aneurysm. Allcock and Drake13 demon-
strated a link between vasospasm and symptoms of
focal ischaemia. Arterial narrowing has typically
been shown to have a delayed onset and a peak
between 5 and 14 days, following which it typically
resolves (figure 1).14 It is, therefore, understandable
as to why CVS has been related to delayed deterior-
ation.14–18

Multiple signalling pathways have been impli-
cated in the pathogenesis of arterial spasm. The
principal initiating factors are thought to be blood
degradation products which accumulate in the sub-
arachnoid space and act as triggering substances for
the development of endothelial dysfunction and an
intramural inflammatory response.

Blood degradation products
Clinically, there is a clear link between the severity of
CVS and the amount of subarachnoid blood seen on
CT,19–23 a relationship recognised by the Fisher
scale.19 The contractile property of cerebrospinal
fluid (CSF) from patients with SAH was first
described by Buckell.24 Since then it has been demon-
strated that blood degradation products trigger a
molecular cascade which leads to CVS. Several key
observations support the role of oxyhaemoglobin, in
particular, in the pathogenesis of post-SAH
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vasospasm. It was shown to induce vasoconstriction in cerebral
arteries in vitro.25–27 Furthermore, intrathecal injection of oxy-
haemoglobin, or a supernatant from autologous blood, was shown
to induce vasospasm in primates. Importantly, in the same experi-
ment, injection of methaemoglobin, bilirubin or sham CSF did not
induce vasospasm. The exact mechanisms by which oxyhaemoglo-
bin induces vasoconstriction remain unknown, but several key
factors have been described. Oxyhaemoglobin is known to alter
the synthesis of eicosanoids in vessel walls, in particular, decrease
the production of PGI2 and increase the production of PGE2.
Furthermore, oxyhaemoglobin spontaneously oxidises to meth-
haemoglobin releasing superoxide, which in turn, is known to lead
to lipid peroxidation and vasoconstriction. Finlay, it has been
demonstrated that oxyhaemoglobin inhibits endothelial-
dependent relaxation.22 However, experimental and clinical
studies have not, so far, demonstrated that inhibition of any one of
these mechanisms alone can completely reverse vasospasm,
further confirming a multidirectional effect of blood degradation
products on cerebral vasculature. At present the molecular path-
ways remain largely unknown, and there are no effective pharma-
cological means to influence all the implicated mechanisms.
However, approaches aimed at clearing subarachnoid spaces form
blood products seem reasonable.

Inflammation
Blood-brain barrier breakdown as a consequence of SAH has
been shown to lead to trafficking of lymphocytes into the CSF,
as well as infiltration of arterial walls.28–31 While little direct
evidence exists confirming that an induced inflammatory
process may directly lead to development of vasospasm, it has
been demonstrated that activated mononuclear cells within the
CSF can release ET-1, a known vasoconstricting agent.32

Furthermore, blood degradation products were shown to be suf-
ficient to induce ET-1 production by activated mononuclear
cells providing a direct link between SAH, inflammation and
ET-1 production.32 Longitudinal analysis of the inflammatory
reaction after SAH revealed that there is a massive, compart-
mentalized increase in the secretion of proinflammatory

cytokines such as IL-1β and IL-6.33 Furthermore, the changes in
cytokine concentrations parallel the changes in blood flow
velocity.33

Nitric oxide and nitric oxide synthase
Nitric oxide (NO) is one of the key endothelium-derived factors
which govern vascular muscle tension. It increases 30, 50-cyclic
guanosine monophosphate (cGMP) levels in vascular smooth
muscle cells leading to vasodilatation and an increase in cerebral
blood flow.34 35 NO levels are known to decrease following SAH
in a characteristic biphasic distribution: acute—30 min after the
ictus36; and delayed—around 4–7 days following the ictus.37 38

Whether, this is a result of binding by oxyhaemoglobin or sec-
ondary to an inflammatory process remains unknown.
Furthermore, while shear stress induces vasodilatation in healthy
arteries via endothelial NO synthase (NOS), this pathway is
impaired following SAH,39 40 with a clear reduction in NOS
mRNA reported on day 7 post-ictus.41 Furthermore, endogenous
inhibitors of endothelial NOS, such as asymmetric dimethylarg-
nine and protein kinase C have been described to be upregulated
following SAH.42–44 Experimental and human data suggest that
vasospasm can be ameliorated with the aid of exogenous NO
donors such as sodium nitroprusside or nitroglycerine.45 46

However, adverse systemic effects of these medications (princi-
pally hypotension, which has been shown to be more pro-
nounced than that seen with nimodipine) make them
inappropriate for routine systemic administration in clinical prac-
tice. Nevertheless, it needs to be pointed that a number of studies
have investigated intrathecal administration of NO donors in
humans with little systemic side effects. However, the deactiva-
tion of NO exposed to oxyhaemoglobin and deoxyhaemoglobin,
(formation of methaemoglobin, S-nitroso-haemoglobin and
ferrous-nitrosyl-haemoglobin) remains a concern (see Pluta47 for
a detailed review on NO and DCI). Recently the safety of sys-
temic administration of sodium nitrate in humans has been con-
firmed, with potential clinical trials in SAH awaited.48

Endothelin-1
Endothelin-1 (ET-1), one of the most potent endogenous vaso-
constrictors, produced by endothelial cells, is stimulated by
ischaemic insult, but also by oxyhaemoglobin.49 The levels of
ET-1 in the CSF of patients with vasospasm have been shown to
be higher than those found in healthy subjects.50 51

Furthermore, increases in ET-1 levels correlate with the onset of
ischaemic symptoms.50 51 However, other studies demonstrated
that, although, ET-1 levels were higher in patients with DCI,
they were within normal range in patients with angiographic
evidence of arterial narrowing without clinical symptoms,52 sug-
gesting that ET-1 may be a marker of ischaemic tissue damage
rather than vasospasm.52 While the exact role of ET-1 in the
development of CVS is unknown, it has been demonstrated that
administration of ET-1 receptor type A (ETA) antagonists in an
experimental setting reduced vasospasm.53 54 Similar findings
were reported in the randomised controlled trial of Clazosentan
(an ETA receptor antagonist), where inhibition of ET-1 signal-
ling significantly reduced large vessel narrowing in a clinical
setting.55–59

THE RELATIONSHIP BETWEEN VASOSPASM AND DCI
Narrowing of cerebral arteries may cause a reduction of cerebral
blood flow distal to the spastic segment, depending on the state of
autoregulation, which in consequence, may lead to ischaemia and
infarction.60–63 However, while up to 70% of patients demon-
strate a degree of arterial narrowing on catheter angiography,64 65

Figure 1 Flow velocity changes in a cohort of subarachnoid
haemorrhage patients. An increase of FV can be seen from day 6 with
a peak at day 10–12. Spontaneous resolution not clearly seen as
patient numbers decreased in the second and third week due to
discharge. Horizontal dashed line represents FV threshold of 120 cm/s,
typically used in the diagnosis of cerebral vasospasm (CVS). Vertical
dashed line is the median time of vasospasm onset. FV, flow velocity.
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only 20–30% develop clinical symptoms.66 The positive predictive
value of vasospasm (diagnosed using stringent criteria with the aid
of two imaging methods) for DCI is only 67%.8 Furthermore, up
to 25% of delayed infarcts seen on follow-up CTare not located in
the territory of the spastic artery, or are found in patients who did
not demonstrate vasospasm.67–69

A number of studies suggested that only severe vasospasm
with at least 50% luminal narrowing produces a reduction of
cerebral blood flow which is sufficient to cause symptoms of
ischaemia.17 63 70–74 However, others have reported that only
50% of patients with severe CVS on angiography become
symptomatic.60 Positron emission tomography (PET) has
shown that delayed neurological deficits after SAH were asso-
ciated with a wide range of haemodynamic disturbances,
ranging from hypoperfusion to hyperaemia,75 and that the
spatial distribution of the haemodynamic disturbances did not
always coincide with the vascular territory where narrowing
was identified.70 75 76 With a more widespread use of perfu-
sion imaging methods (such as perfusion CT) for the evalu-
ation of DCI, similar findings are being increasingly reported
(figure 2).77

By contrast, some studies, with rigorous angiographic control,
report that indeed, there is a significant correlation between
angiographic vasospasm, DCI and delayed infarctions on
follow-up imaging, and that only 3% of patients with none or
only mild angiographic spasm develop delayed infarcts.16 These
findings spark the question, whether other factors may respon-
sible for the observed discrepancies. It is known that transcranial
Doppler (TCD) diagnosis of vasospasm is limited mainly to the
anterior circulation and, in particular, to the middle cerebral
artery, therefore, spasm in other vessels may be misinterpreted.
Furthermore, infarction on follow-up imaging needs to be inter-
preted with caution in the absence of immediate postoperative
imaging to rule out other, potentially iatrogenic causes. As
immediate postoperative imaging is not standard practice in
many centres, this is not always reported. While in most cases,
SAH is promptly diagnosed and the culprit aneurysm detected
and treated, there remains a population of patients with a
delayed presentation with only minimal symptoms who may
have been exposed to haemodynamic instability in the early
phase post-bleed.

Nevertheless, a recent meta-analysis of pharmacological treat-
ment of vasospasm and DCI demonstrated that, despite a reduc-
tion in the incidence of CVS, there was, in most cases, little or
no effect on outcome.78 Similar results were reported from the
trial of clazosentan (a potent ETA receptor antagonist) as well as
nicardipine (potent calcium channel blocker).55 79 Conversely,
nimodipine, which is so far, the only drug for which class I evi-
dence exists, reduced the incidence of DCI and poor outcome
by 40%, without ameliorating vasospasm.80–82

While many of the disappointing results may have been a con-
sequence of systemic complications of the investigated com-
pounds, which often caused blood pressure instability or
pulmonary complications (such as those observed in trials of cla-
zosentan and nicardipine), together these results argue against
arterial narrowing being the sole cause of DCI. Given these
findings, there is a clear need to investigate other mechanisms
which may promote cerebral ischaemia following SAH. These
include early brain injury (EBI), microvascular spasm, micro-
thrombosis, spreading cortical depolarisations and failure of
cerebral autoregulation (figure 3).83 84

EARLY BRAIN INJURY
Recent reports suggest that events occurring before the onset of
vasospasm, during the first 72 h after the ictus may significantly
contribute to outcome following SAH.85–93 EBI includes the
primary injury resulting from the ictus as well as its direct
consequences.

It has been demonstrated in experimental and clinical studies
that aneurysm rupture is accompanied by a severe rise of intra-
cranial pressure, often to suprasystolic levels,94 95 caused by
extravasation of arterial blood into the subarachnoid spaces, as
well as a vasodilatory cascade.91 96 97 Intracranial hypertension
leads to a decrease in cerebral perfusion pressure, and ultimately
to cessation of cerebral blood flow (clinically manifested as
syncope or loss of consciousness), and in consequence, global
ischaemia, and later oedema.92 93 98 Another mechanism which
leads to increases of intracranial pressure and reductions of cere-
bral blood flow is CSF outflow obstruction and acute as well as
chronic hydrocephalus. Hydrocephalus may also contribute, at
least partially, to the early haemodynamic disturbances and,
hence, EBI.

Figure 2 (A) Cerebral angiogram of a patient with WFNS 1, Fisher 3 SAH from a ruptured left PComA aneurysm (left ICA injection) performed on
day 6 postictus, demonstrates diffuse severe vasospasm in the left ICA, ACA and MCA. (B) Perfusion CT performed same day shows mild reduction
in CBF with (C). a compensatory increase in CBV indicative of autoregulatory vasodilatation. (D and E) CT on day 12 demonstrates delayed infarcts
in the ACA and MCA territories. (F) Cerebral angiogram of a patient with WFNS 2, Fisher 3 SAH from a ruptured right AChA aneurysm (right ICA
injection) performed on day 8 postictus, demonstrates segmental vasospasm in the right ICA and MCA, as well as diffuse vasospasm in ACAs
bilaterally. (G and H) Perfusion CT scan performed on the same day, demonstrates a perfusion deficit only in the left ACA territory only in CBF and
CBV. (I and J) Delayed CT did not demonstrate any hypodensities. ACA, anterior cerebral artery, AChA, anterior choroidal artery; CBF, cerebral blood
flow; CBV, cerebral blood volume, ICA, internal carotid artery, MCA, middle cerebral artery, SAH, subarachnoid haemorrhage; WFNS, World
Federation of Neurosurgical Societies.
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Global cerebral ischaemia, which occurs in the acute phase of
SAH, has been shown to activate several key pathophysiological
pathways which, in consequence, may lead to direct nervous
tissue injury as well as increased tissue vulnerability to secondary
insults. These include initiation of cell death mechanisms,90 99

blood-brain barrier disruption,100 101 an acute inflammatory
response,102 103 all of which contribute to development of cere-
bral oedema,104 which itself is a poor prognostic
factor.85 105 106 Furthermore, the acute haemodynamic com-
promise may lead to microvascualr spasm63 107 108 and micro-
thrombosis,107 109 110 as well as failure of cerebral
autoregulation (figure 3).62 111–114 All these processes are poten-
tial players in perpetuating ischaemic injury after SAH, poten-
tially contributing to the delayed manifestation when sufficient
insults have occurred. The mechanisms implicated in DCI, along
with the relevant publications are summarised in online supple-
mentary table S1.

OXIDATIVE STRESS
Experimental and clinical evidence exist supporting the role of
free radicals and oxidative stress in SAH.115–122 Generation of
free radicals is related to auto-oxidation of haemoglobin in the
CSF, altered mitochondrial function, lipid peroxidation, as well
as NADPH oxidase function.123 Studies showed that generation
of free radicals is important in the pathogenesis of CVS as well
as DCI.115 116 119 120 122 Human data indicates an increase in
oxidative stress and lipid peroxidation in serum as well as CSF
within 3 days after SAH.115 118 119 120 Furthermore, the
increases are more pronounced in patients who developed
DCI115 116 and those with poor neurological outcome.119 120

Markers of CSF lipid peroxidation peaked at day 6, suggesting a
temporal relationship with DCI.115 However, due to the lack of
simultaneous clinical correlation it is difficult to judge whether
they precipitated of were a consequence of ischaemia.
Nevertheless, in transgenic animal models it was demonstrated
that an increase in the antioxidant capabilities leads to a reduc-
tion in apoptotic cell death after SAH.122

CELL DEATH, BLOOD-BRAIN BARRIER BREAKDOWN AND
INFLAMMATION
Experimental data looking at cell death mechanisms is largely
derived from experimental animal work due to the difficulty
with available technology to image these processes in vivo. It
has been demonstrated that neuronal cell death occurs within
24 h after SAH.124 125 Necrosis, apoptosis and autophagy have
all been described in animal models, often simultaneously.126 127

Intrinsic, caspase-dependent pathways have been shown to be
activated as early as 40 min after SAH.128 129 Activation of
proapoptotic proteins, such as Bak, Bax, Bad and Bcl-XS is
present, as well as activation of caspases 3, 8 and 9.130 131 On
the other hand, while the early concepts and descriptions of the
involved mechanisms of blood-brain barrier breakdown and
neuroinflammation arise from experimental models, there have
been a number of studies investigating these processes in
humans using imaging and monitoring techniques. Blood-brain
barrier breakdown and inflammation have also been reported in
the acute phases after SAH. Animal models demonstrated that
neutrophils can accumulate in cerebral vessels within 10 min
after experimental SAH.132 Clinical studies looked at the major
proinflammatory cytokines, for example, IL-1β, IL-6, IL-1
receptor and TNFalfa, and found that they are increased in the
CSF within 3 days after SAH.133 Their increase has been asso-
ciated with unfavourable outcome, vascular spasm, as well as
hyperthermia.

MICROVASCULAR SPASM
A study by Yundt et al134 demonstrated a diminished vasodila-
tory capacity of the cerebral microcirculation in patients who
sustained SAH. Furthermore, data from experimental studies,
where direct observations of small intraparenchymal and pial
arterioles was performed, suggested the presence of microvascu-
lar spasm in two different experimental models of SAH.135–137

Ohkuma et al136 performed serial morphometric analyses of
cerebral microvessels after cisternal blood injection, and demon-
strated maximal luminal narrowing between days 3 and 7.

Figure 3 Diagram depicting the possible pathophysiological pathways which may lead to development of DCI. The time ranges at bottom depict
approximate/presumed periods when the various processes occur. At present, it is unknown which of the mechanisms is the main culprit, however,
the paradigm is shifting away from cerebral vasospasm. AIF, apoptosis inducing factor; CBF, cerebral blood flow; CBV, cerebral blood volume; EDHF,
endothelial derived hyperpolarising factor; ET-1, endothelin 1; FasL, Fas ligand; ICP, intracranial pressure; IL-6, interleukin 6; NO, nitric oxide; NOS,
nitric oxide synthetase; Oxy-Hb, oxyhaemoglobin; PAF, platelet-activating factor; PGI2, prostacycline; TNFR, tumour necrosis factor receptor; vWF,
von Willebrand factor; DCI, delayed cerebral ischaemia. (Based on refs. 90, 94, 95, 99).
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Similar findings were reported in vivo in mice subjected to
experimental SAH.107 In vivo microvascular spasm assessed
using the cerebral circulation time on angiography showed that
if present within the first 24 h, it might be predictive of subse-
quent large vessel vasospasm and DCI.108 Furthermore, it was
demonstrated that regional reductions in cerebral blood flow are
better correlated with narrowing in the microvascular compart-
ment than with narrowing of large cerebral arteries.63 These
observations argue that microvascular constriction, or the lack
of microvascular dilatation may play a role in the development
of DCI. The presence of microvascular spasm, not readily
visible on catheter angiography, or transcranial Doppler may
account for the observed discrepancies between imaging and
clinical symptoms.

MICROTHROMBOSIS
It has been shown that the levels of blood coagulation markers cor-
relate with development of DCI.138 139 140 141 142 Procoagulant
activity has been shown to precede DCI, with increased levels of
platelet-activating factors noted on day 4 post-SAH,143 an increase
in the von Willebrand factor seen as early as 72 h after the
ictus,138 and loss of collagen type IV (a component of the basal
lamina).109 These changes were accompanied by platelet aggrega-
tion in parenchymal vessels, which was seen as early as 10 min
after experimental SAH.109 110 Interestingly, the timing of aggre-
gate clearance is inconsistent with one study reporting reperfusion
at 24 h,109 while in another, the peak intensity of platelet aggrega-
tion at the same time point.110 Importantly, microthrombi have
also been found on autopsy of patients with SAH confirming that
microthromboemboli are indeed a part of the clinical picture fol-
lowing SAH, in humans.144

Antifibrinolitic therapy with tranexamic acid resulted in a sig-
nificant reduction in the rate of rebleeding following SAH.145–148

However, the benefit may have been counteracted by the
increased incidence of DCI, which was not associated with large
vessel spasm. These findings lead researchers to believe that the
changes in coagulation homeostasis induced by tranexamic acid
(causing microthrombosis) may have promoted DCI.149

A large systematic review and a meta-analysis performed by
Darhout Mees and colleagues150 151 demonstrated that adminis-
tration of antiplatelet medications after SAH reduces the relative
risk (RR) of DCI by 15%, and shows a non-significant trend
towards improved outcomes. Nevertheless, a benefit on
outcome was not demonstrated, hence routine use is not
recommended.

CORTICAL SPREADING DEPOLARISATION
Cortical spreading depolarisation is an abrupt electrical change
with near-complete and sustained depolarisation of a neuron or
group of neurons, which has a tendency to spread through the

cortex, and is associated with hyperaemia. However, when
clustered or affecting injured tissue cortical spreading depolari-
sations are associated with metabolic, biochemical and morpho-
logical dysfunction of brain parenchyma, manifested as
hypoperfusion, cytotoxic oedema and hypoxia.152 153 Cortical
spreading depressions do not normally occur in uninjured brain,
however, they have been implicated in the pathophysiology of
migraine. Spreading depolarisations have been observed in poor
grade patients following SAH.154–156

A multicenter observational study where invasive electrocorti-
cography was performed, the CoOperative Study on Brain
Injury Depolarisations (COSBID) demonstrated that clusters of
spreading depolarisation are associated, and precede, develop-
ment of DCI in the absence of vascular spasm.156 The proposed
mechanism responsible for propagation of DCI in these cases is
thought to be an inverted haemodynamic response. In normal
circumstances, a wave of spreading depolarisation is accompan-
ied by a hyperaemic response.154 With repeated waves, this
hyperaemic response is diminished, and a vasoconstrictive reac-
tion is observed with a decreased regional cerebral blood flow
and oxygen supply.154 157 The mechanism for the inverted
haemodynamic reaction remains poorly understood. In particu-
lar, it is unclear whether the mechanism responsible for vaso-
constriction and vasodilatation during waves of depolarisations
are the same as for vasomotor reactions in response to chemical
and pressure stimuli.

CEREBRAL AUTOREGULATION
Experimentally, CVS does not reduce distal cerebral blood flow
unless there is an additional insult, such as a fall in blood pres-
sure.158 This finding supports Harper’s dual-control hypoth-
esis,159–161 whereby proximal arterial spasm may be
compensated by distal autoregulatory vasodilatation. However,
there is a limit to such compensatory mechanisms, which is why
a second insult, such as a drop in perfusion pressure or
increased metabolic needs, results in insufficient blood and
nutrient supply leading to ischaemia. With impaired autoregula-
tory mechanisms (figure 4), even a single insult, such as vessel
narrowing or haemodynamic instability, may lead to significant
drop in blood flow rendering the brain at an increased risk of
ischaemia. Evaluation of cerebral autoregulation is being increas-
ingly recognised as a factor requiring consideration in the man-
agement of patients with SAH.112 114 113 162–164 Three recent
prospective studies have demonstrated that indirect indices of
cerebral autoregulation can be used to prognosticate DCI as well
as long-term outcome after SAH.112 113 163 164 165 Importantly,
autoregulation was found to deteriorate before clinical symp-
toms as well as radiographically identifiable arterial narrow-
ing.163 Whether treatment interventions can be used to alter the
state of autoregulation is unknown. In a phase II randomised

Figure 4 Grey line depicts normal autoregulation; black line depicts different stages of impaired autoregulation, from a shift of the autoregulatory
curve to complete loss of autoregulation. AR, autoregulation; CBF, cerebral blood flow; CPP, cerebral perfusion pressure.
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study of 80 patients, it was demonstrated that treatment with
pravastatin shortens the duration of autoregulatory impair-
ment.166 167 While a reduction in vasospasm and DCI was also
observed, there was no effect on 6-month outcome.168

TREATMENT OF DCI
DCI, where insufficiency of blood and nutrient supply to the brain
is present, may in consequence lead to infarction, permanent defi-
cits and ultimately poor functional outcome. Despite the multiple
mechanism involved, therapy has been largely targeting large
vessel spasm. The following sections aim to summarise the current
treatment strategies, for which human data is available. The avail-
able randomised controlled trials RCTs are delineated in online
supplementary table 2.

Clearance of subarachnoid spaces
Blood degradation products are thought to be one of the princi-
pal mechanisms responsible for development of vaso-
spasm,22 23 24 suggesting that rapid clearance of blood from
subarachnoid spaces may have beneficial effects. Numerous
methods have been investigated, including continuous cisternal
drainage, lumbar drainage, as well as intrathecal administration
of thrombolytics There are reports suggesting good success rates
in decreasing the incidence of DCI with continuous cisternal
drainage, however, a RCT has not been performed.169 Results
from the first single-centre trial of early, continuous lumbar
drainage hold promise, with a significant decrease in the inci-
dence of DCI from 35% to only 21%.170 However, the study
failed to demonstrate any long-term benefit in outcome.
Another trial aiming to recruit 300 patients is currently ongoing
(clinicaltrials.gov; NCT01258257).171

Five RCTs have evaluated the use of intrathecal thrombolytic
agents to clear subarachnoid blood.172–176 A meta-analysis of
these studies suggests a reduction in the incidence of DCI, as
well as improvements in outcome.177 However, the benefit
failed to reach statistical significance after exclusion of one study
where concomitant intrathecal nimodipine was administered.174

Systemic targeting of angiographic vasospasm
Nimodipine, a calcium channel blocker, is the only drug approved
for use in SAH, and is the mainstay of treatment.178 In a
meta-analysis, it has been shown to reduce the risk of poor
outcome, with a RR of 0.7.81 While traditionally nimodipine has
been thought to prevent CVS, vascular narrowing on angiography
was not included as an outcome measure in the largest trial.80

Other RCTs have demonstrated that nimodipine does not have an
effect on angiographic vasospasm despite the beneficial effect on
outcome, suggesting a different mechanism.82 In vitro and in vivo
research demonstrates that nimodipine may have an effect on the
whole vasculature, inhibiting contractions induced by noradren-
aline and serotonin, potassium membrane depolarisation, as well
as PGF2alfa.179 Furthermore, nimodipine has been also described
to increase the fibrynolitic activity by decreasing the level of plas-
minogen activator inhibitor-1 (PAI-1).180

Nicardpine has been evaluated in a large, multicenter RCT in
the USA—Cooperative Aneurysm Study.79 The advantage of
nicardipine was the ease of preparation of the intravenous
formula to be administered continuously. The study demon-
strated a significant reduction of vasospasm from 46% to 32%.
However, there was no benefit on outcome, with an increased
number of systemic complications, such as pulmonary oedema
and metabolic derangements in the treatment group.

Another vasodilatator which has been studied in SAH is
fasudil. Fasudil is a potent RhoA/Rho kinase (ROCK) inhibitor,

which is also thought to inhibit the action of free intracellular
calcium, as well as inhibit protein kinases A, G and C, and
myosin light-chain directly. Fasudil has been repeatedly shown
to have beneficial effects on development of CVS, delayed cere-
bral infarcts as well as outcome.181 Furthermore, fasudil has
been compared with nimodipine (although intravenous rather
than oral) demonstrating improved outcome.182 A large multi-
center study is yet to be conducted.

Cilostazol, a phosphodiesterase 3 inhibitor is a platelet aggre-
gation inhibitor, which also has an effect on smooth muscle
cells.183 Cilostazol has been shown to ameliorate vasospasm in
experimental models.184 Two RCTs were conducted evaluating
the use of cilostazol in SAH. One study demonstrated a benefit
on DCI and outcome at discharge.185 The second study showed
a reduction in the risk of vasospasm and cerebral infarction,
without improvements in outcome.186 In a meta-analysis, which
additionally included two non-RCT, a benefit on outcome at
discharge was demonstrated (also when the non-RCT studies
were excluded).187 Importantly, only one study reported long-
term outcomes, which did not differ between groups.186

Endothelins, potent vasoconstrictors, have been implicated in
CVS.49 50 51 An endothelin A receptor antagonist, clazosentan
has been shown in experimental as well as clinical studies to
ameliorate vasospasm.53 54 55 57 58 However, in a large multi-
centre, phase III study, no improvement in outcome could be
shown.56 Similarly to nicardipine, patients receiving the drug
suffered from a large number of systemic complications.

Local delivery
Administration of drugs targeting vasospasm is frequently ham-
pered by systemic complications, a factor that has generated
interest in local delivery methods. At present, the only locally
delivered substance for which clinical data exist is nicardipine
administered into the subarachnoid spaces as prolonged-release
implants. Preliminary data comes from an open-label trial in
Japan (n=97), where a decrease of the incidence of DCI was
noted from 11% to 6%.188 Subsequently, in a single centre RCT
(n=32), nicardipine implants were found to significantly
decrease the incidence of vasospasm (73% vs 7%), delayed
infarcts (47% vs 14%), as well as improved outcome (38% vs
6%).189 Notably, the study was conducted only on poor-grade
SAH patients, hence, the generalisability and robustness of the
results remains uncertain. Currently, no phase III study has con-
firmed the significance of the initial findings.

Prophylactic balloon angioplasty has not been shown in a
multicentre phase II study to be beneficial following SAH.190

Therapeutic balloon angioplasty and intra-arterial vasodilators,
while used in some patients when medical management has
failed, are only now being studied in a randomised trial—
Diagnostic and Therapeutic Management of Cerebral
Vasospasm After Aneurysmatic Subarachnoid Haemorrhage
(IMCVS) (clinicaltrials.gov; NCT01400360).

Drugs with multidirectional effects/neuroprotection
Statins, which have been shown to have diverse clinical effects,
have been evaluated in four single-centre RCTs with mixed
results.166 168 191–193 A meta-analysis of the trials has so far
demonstrated no benefit from using this treatment.11 However,
a multicentre study of simvastatin is currently ongoing (clinical-
trials.gov; NCT00731627), with another one comparing high
dose vs low dose (clinicaltrials.gov; NCT01077206).
Interestingly, statins have been shown to reduce the duration of
impaired autoregulation after SAH, which has been implicated
as a potential mechanism of action.166
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Magnesium is another compound with neuroprotective
effects which has been assessed in SAH.194 The interest in mag-
nesium sparked from an observation that hypomagnesemia may
be associated with increased incidence of DCI.195 However, the
results from the largest multicentre study and a meta-analysis
failed to demonstrate a significant difference in outcome.196

The neuroprotective effects of erythropoietin (EPO) have
been studied in experimental models.197 198 Furthermore, EPO
has been shown to ameliorate vasospasm and improve outcome
after experimental SAH.199 Tseng,200 in a single-centre study
demonstrated that, similar to statins, EPO treatment was asso-
ciated with a reduced duration of impaired autoregulation, a
lower incidence of severe vasospasm and DCI, as well as an
improved outcome at discharge. However, long-term benefits
were not demonstrated.

Albumin, 25%, has been shown to be neuroprotective.201 A
pilot study of human albumin demonstrated a good tolerability.
Results from phase III RCTare awaited.

Microthrombosis
The findings that SAH leads to clotting activation (physiological
mechanism to prevent rebleeding), platelet aggregation and
microthrombosis lead to design of studies of antiplatelet agents.
Nevertheless, despite solid pathophysiological background, the
results of the studies have been largely negative.151 Similarly, the
role of low molecular weight heparin in the prevention of
microthrombosis has been investigated in two RCTs. Results of
the studies were mixed, with one demonstrating a lack of effect
on outcome and four cases of intracranial bleeding thought to
be related to the treatment.202 By contrast, another study found
a beneficial effect of enoxaparin on vasospasm, DCI as well as
outcome, with fewer haemorrhagic complication in the treated
group.203 However, the results need to be treated with caution,
as groups were not well matched for admission grade.

Free radicals and inflammation
Tirilizad mesylate, a non-glucocorticoid, 21-aminosteriod that
inhibits lipid peroxidation, has been evaluated in four RCTs
with mixed results.204–207 However, two meta-analyses demon-
strated no effect on DCI, infarcts, or outcome.208 209

Three studies investigated the effect of free radical scavengers on
DCI and outcome after SAH.210–212 Ebselen was found to improve
outcome in a large study of 286 patients. Interestingly, the improve-
ment in outcome was independent of the incidence of DCI which
was unchanged between the treatment and placebo groups.211

Similarly, two other free-radical scavengers, nicaraven and edara-
vone, have been proven to be beneficial, after SAH.210 212

Several anti-inflammatory compounds have been studied after
SAH. Suzuki,213 used a synthetic thromboxane synthetase
inhibitor, OKY-046, to prevent DCI. They demonstrated reduc-
tion of DCI and improvement in outcome at 1 year.213

Methylprednisolone, a strong immunosuppressant, was shown
in a randomised study to significantly improve outcome without
any effect on vasospasm.214

Despite these promising results, none of the investigated com-
pounds have been assessed in multicenter studies nor implemen-
ted in clinical practice.

CONCLUSIONS
Outcome form SAH has improved in the last 20 years. This is
most likely due to early aneurysm repair, intensive management,
and routine use of nimodipine. However, the exact influence of
management of DCI on outcome is unclear. This is further com-
plicated by the wide differences in the incidence of DCI, with

some studies suggesting an incidence around 15–20%, while
others as high as 40%. Despite new data and increased understat-
ing of the pathophysiology of SAH, DCI as well as EBI, no new
treatments have been introduced since nimodipine. Data from
large randomised controlled studies suggests that a pure focus on
CVS, as the sole cause of DCI and poor outcome, is misguided.
Nevertheless, the available data does not yet support other
approaches aimed at mechanisms distinct form vasospasm, such
as microthrombosis and platelet aggregation, inflammation and
formation of free radicals. Consequently, current management
strategies frequently focus on intensive care management with
widespread use of pharmacological and interventional rescue
therapies. While numerous targets are still being investigated,
some of the more promising results come from drugs with multi-
factorial effects, such as statins or cilostazol. Overall, available
data suggests that a focus on a single pathway may not be suffi-
cient to improve outcomes in SAH. Furthermore, design of
future clinical trials should take notice of the available findings
and construct studies with appropriate selection of high-risk
patients, as well as adequately sensitive and objective outcome
measures. Similarly, studies which failed to demonstrate outcome
benefits, where sound physiological data exist, should be
re-evaluated with the aim of explaining the reason for futility,
helping to define the patient groups which could benefit as well
as provide background for future drug development.
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