of 19 patients misdiagnosed as chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and we assessed fulfillment of European Federation of Neurological Societies/Peripheral Nerve Society (EFNS/PNS) EDx criteria for demyelination. We excluded from the analysis distal motor latency prolongation and distal compound motor action potential (CMAP) duration in the median nerve because of frequent median neuropathy at the wrist from carpal tunnel syndrome and conduction block in the tibial nerve for technical reasons.

ATTR amyloidosis had been misdiagnosed in 49/150 (32%) cases. Most frequently considered alternative diagnoses were CIDP, lumbar and sacral radiculopathy and lumbar canal stenosis, paraproteinemic peripheral neuropathy, AL amyloidosis and other causes of acquired neuropathy (table 1).

Thirty (61%) patients received immune therapy, including intravenous immunoglobulins (22 patients, 45%), steroids (25 patients, 51%) and immune suppressors (6, 12%) or a combination of them (22 cases, 45%) without clinical improvement. Moreover, 11 patients (22%) previously diagnosed with lumbar spinal stenosis and radiculopathy secondary to degenerative spine disorder underwent spine surgery with no or only transient clinical improvement of symptoms.

Delay from disease onset to correct diagnosis was significantly longer in misdiagnosed patients compared with those not misdiagnosed (46.4±25.4 months vs 34.7±26 months; p=0.01).

In a multivariate logistic regression model, late onset after 55 years, absence of family history, male gender and absence of symptomatic heart involvement were independently associated with misdiagnosis (table 1) but not autonomic dysfunction, small fibre neuropathy symptoms and mutation type (Val30Met vs non-Val30Met).

Seventy-six patients underwent a tissue biopsy before being referred to our centre. The tissue biopsy failed to show amyloid deposit in 9/35 (25%) nerve biopsies, 15/32 (47%) fat pad biopsies, 7/19 (37%) perineural biopsies, 15/32 (47%) skin biopsies and 7/19 (37%) cardiac biopsies. A amyloid deposit in 9/35 (25%) nerve biopsies, 15/32 (47%) fat pad biopsies, 7/19 (37%) perineural biopsies, 15/32 (47%) skin biopsies and 7/19 (37%) cardiac biopsies. A

EDx study at time of misdiagnosis was available for review in 19 cases. Seven of them fulfilled EFNS/PNS criteria for definite demyelinating polyneuropathy. Reduced conduction velocities were observed in 11 of them, as low as to 3.3 m/s at the upper limbs and 30 m/s at the lower limbs. Slow conduction velocities were invariably associated with reduced CMAP amplitudes.

Lumbar puncture was performed in 7/30 patients diagnosed with CIDP and showed cytological dissociation with mild elevation of proteins in five cases (70±21.5 mg/dL, range 49–96).

Finally, the contemporary presence of M-protein was misleading in six cases diagnosed as AL amyloidosis or paraproteinemic peripheral neuropathy.

Our study shows that ATTR amyloidosis is still misdiagnosed in a high proportion of cases, with significant increase, up to 1.5-fold and 4 years, in diagnostic delay. Lack of family history, late onset of the neuropathy and absence of cardiac involvement were significantly more frequent in misdiagnosed patient and often misled practitioners into suspecting a different cause of acquired neuropathy.

Moreover, our study identified male gender as another risk factor for ATTR misdiagnosis, although this could be due to the high proportion of patients misdiagnosed with degenerative disorders of the spine, which is more common in the male gender.

CIDP was the most frequent misdiagnosis of ATTR amyloidosis in Italy and, as suggested by previous studies,2–4 demyelinating features on nerve conduction study and a mild raise of CSF proteins were found to be a relevant factor leading to disease misdiagnosis. However, it is not fully understood whether reduced conduction velocity changes represent true demyelination or are mainly secondary to loss of fast conduction large diameter fibres. There is also no obvious explanation for presence of cytoalbuminological dissociation in CSF. We speculate that a disruption of the integrity of blood–nerve barrier at the level nerve roots may occur, possibly due to amyloid deposition at this level. Interestingly, loss of tight junctions and the fenestration of endothelial cells, as well as other changes in endotelial cell morphology and number, were recently identified as common pathological finding by electron microscopy in sural nerve biopsies from patients with ATTR amyloidosis.

Of note, spondilogenic radiculopathies and lumbar canal stenosis were also frequently suspected before the diagnosis of
Table 1 Alternative diagnosis for patients with hereditary ATTR amyloidosis and variables associated with misdiagnosis of hereditary ATTR amyloidosis

<table>
<thead>
<tr>
<th>Misdiagnoses</th>
<th>n=49 (%)</th>
<th>OR (95% CI)*, p value</th>
<th>OR (95% CI), p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late onset (after 50 years)</td>
<td>46 (94)</td>
<td>5.59 (1.60 to 19.49), p=0.007</td>
<td>3.89 (1.02 to 14.81), p=0.046</td>
</tr>
<tr>
<td>Absence of family history</td>
<td>28 (58)</td>
<td>2.4 (1.19 to 4.83), p=0.01</td>
<td>2.19 (1.01 to 4.98), p=0.049</td>
</tr>
<tr>
<td>Male gender</td>
<td>42 (86)</td>
<td>2.78 (1.12 to 6.86), p=0.02</td>
<td>2.67 (1.02 to 6.98), p=0.044</td>
</tr>
<tr>
<td>Absence of heart involvement (NYHA=2)</td>
<td>31 (63)</td>
<td>2.05 (1.02 to 4.14), p=0.04</td>
<td>2.60 (1.19 to 5.66), p=0.016</td>
</tr>
<tr>
<td>Negative tissue biopsy</td>
<td>14/36 (39)</td>
<td>2.5 (0.9 to 7), p=0.08 -</td>
<td></td>
</tr>
</tbody>
</table>

*Univariate logistic regression.
†Variables significantly associated with misdiagnosis in the univariate model were tested in a multivariate logistic regression model.
NYHA, New York Heart Association.

ATTR amyloidosis and a not negligible proportion of these patients underwent spine surgery with partial or no benefit. These data should encourage to raise awareness in neurosurgeons and orthopaedic surgeons about the possibility of ATTR amyloidosis in patients with sensory disturbances and progressive motor deficit at lower limbs, particularly in association with bilateral carpal tunnel syndrome.

It is worth noting that, even when the diagnosis of amyloid neuropathy was suspected and a tissue biopsy performed, the absence of amyloid deposits drove clinicians to reject the diagnosis of amyloid neuropathy in 40% of them and do not perform further genetic testing. In this regard, it is well known that diagnostic sensitivity of biopsy varies greatly across different tissues and various stages of the disease and negative biopsy result does not rule out the disease, particularly in patients with typical signs and symptoms. Altogether this observation emphasises the need for performance of these tests in well-equipped and experienced centres.

ATTR amyloidosis should be timely considered and TTR gene testing performed in the differential diagnosis of unexplained late-onset sporadic axonal and axonal-demyelinating polyneuropathies.

Andrea Cortese,1,2 Elisa Vegezzi,3,4 Alessandro Lozza,1 Enrico Alfonsi,1 Alessandra Montini,1 Arrigo Moglia,1,5 Giampaolo Merlìni,6, Laura Obici6

1IRCCS, C Mondino National Neurological Institute, Pavia, Italy
2Molecular Neuroscience, University College London Institute of Neurology, London, UK
3Neuroscience Consortium, University of Pavia, Monza PoliClinico and Pavia Mondino, Pavia, Italy
4Department of Neurology, Casimiro Mondino National Neurological Institute, Pavia, Italy
5Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
6Amyloidosis Research and Treatment Centre, IRCCS Fondazione PoliClinico San Matteo, Pavia, Italy

Correspondence to Professor Giampaolo Merlìni, Amyloidosis Research and Treatment Centre, IRCCS Fondazione PoliClinico San Matteo, via C. Golgi 19, 27100, Pavia, Italy; gmerlini@unipv.it

Contributors AC: design and conceptualisation of the study, analysis or interpretation of the data, drafting the manuscript, revising the manuscript for intellectual content. EV, AL, EA and AW: analysis or interpretation of the data, revising the manuscript for intellectual content. GM and LO: design or conceptualisation of the study, analysis or interpretation of the data, revising the manuscript for intellectual content.

Funding GM is supported by grants from the ‘Associazione Italiana per la Ricerca sul Cancro’ Special Program Molecular Clinical Oncology 5 per mille n. 9965, from the Cariplo Foundation (n. 2013–0964) and from the Italian Ministry of Health ‘Ricerca Finalizzata 2013’ (RF-2013–02395529). LO is supported by grants from Cariplo Foundation (n. 2014–0709).

Competing interests AC reports travel grants from Pfizer, ISIS-Pharmaceuticals, Alnylam Pharmaceuticals and received honoraria from Pfizer for lectures. AL reports travel grants from ISIS-Pharmaceuticals, Alnylam Pharmaceuticals. GM and LO received honoraria from Pfizer and GSK.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/