044 DRAMATIC DELAYED RECOVERY FOLLOWING SEVERE ANTI-NMDAR ENCEPHALITIS

1Allycia MacDonald, 1Neerisa Jordan, 1Vrai Leong. 1Department of Neurology, Royal Perth Hospital, Perth, WA, Australia; 2Department of Neurology, Fiona Stanley Hospital, Murdoch, WA, Australia

Introduction Long term outcomes in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis are reported to be favourable in 80% of cases, but there is little information regarding recovery following prolonged severe neurological disability.

Case 1 A 16-year-old female presented with headache, fever and acute encephalopathy. Anti-NMDAR antibodies were positive, with an ovarian teratoma. Treatment included oophorectomy, plasmapheresis, corticosteroids, cyclophosphamide, intravenous and intrathecal rituximab, and alemuzumab. After 15 months hospitalisation, she remained in a vegetative state, with tracheostomy and percutaneous gastrostomy tubes, on multiple anticonvulsants. She received no further immunotherapy. MRI brain 2 years after illness onset demonstrated severe generalised cerebral atrophy. Three years after onset, she began to improve. At 5 years she was seizure-free without anticonvulsants, fully independent and ambulatory, without overt cognitive deficits or personality change. MRI brain at 5 1/2 years demonstrated recovery of cerebral volume to within normal limits, but residual hippocampal atrophy.

Case 2 A 21-year-old female presented with headache, fever and personality change. NMDAR-antibodies were positive. A malignant ovarian teratoma was treated with salpingo-oophorectomy and chemotherapy (bleomycin/etoposide/cyclophosphamide). She received plasmapheresis, immunoglobulins, corticosteroids, intravenous and intrathecal rituximab, and bortezomib. She was finally discharged after 21 months hospitalisation with tracheostomy and gastrostomy tubes, on multiple anticonvulsants. She was seizure-free without anticonvulsants, fully independent and ambulatory, without overt cognitive deficits or personality change. MRI brain at 5 1/2 years demonstrated recovery of cerebral volume to within normal limits, but residual hippocampal atrophy.

Conclusions These cases highlight the potential for dramatic delayed clinical improvement despite prolonged severe neurological disability in anti-NMDAR encephalitis.

045 PRIMARY CUTIBACTERIUM ACNES CENTRAL NERVOUS SYSTEM INFECTION CAUSING FOCAL SEIZURES: AN UNUSUAL PRESENTATION OF A RARE DISEASE

1Sophie E Waller, 1Sarah Browning, 1Elizabeth Pepper. 1Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, Australia; 2Department of Infectious Diseases, John Hunter Hospital, New Lambton Heights, NSW, Australia

Introduction Cutibacterium acnes is a Gram positive, anaerobic bacterium of low pathogenic potential that forms part of the normal cutaneous flora. Although most often identified as a contaminant in culture of microbiological specimens, it is commonly implicated in both postoperative wound and implantable device infection. Neurosurgical device infections secondary to C. acnes are well recognised and are likely secondary to bacterial contamination from the skin during surgery. Indolent infection characterised by delayed presentation of weeks to months following intervention is common. C. acnes infection involving the central nervous system (CNS) in the absence of previous neurosurgical intervention is rare, but has been described following dental or mastoid infections and following facial trauma. A further case series has reported de novo C. acnes CNS infection occurring in the absence of these recognised risk factors, but with clinical features of menigitis being common to all.

Methods and results We describe a unique case of primary C. acnes extra-dural collection in a previously well patient with no neurosurgical history presenting with sub-acute focal seizures and progressive focal leptomeningeal thickening on MRI.

Conclusion C. acnes CNS infection can occur in the immune-competent and in the absence of neurosurgical intervention.

046 A CRITICAL REVIEW OF BIOMARKERS FOR HEREDITARY SPASTIC PARAPLEGIA

1,2Sue-Faye Siow, 1Gautam Wali, 1,2Carolyn Sue, 4Kishore R Kumar. 1Northern Clinical School, University of Sydney, Sydney, NSW, Australia; 2Neurogenetics, Kolling Institute, Sydney, NSW, Australia; 3Clinical Genetics, Royal North Shore Hospital, Sydney, NSW, Australia; 4Neurology, Royal North Shore Hospital, Artarmon, NSW, Australia; 5Garvan Institute of Medical Research, Sydney, NSW, Australia

Introduction Hereditary spastic paraplegia (HSP) is a rare neurodegenerative condition characterised by lower limb weakness and spasticity. Currently, treatment is symptomatic and there is no disease modifying therapy. Though candidate therapeutic agents have been identified, sensitive biomarkers to measure treatment efficacy in clinical drug trials are lacking. There are many challenges in the search for appropriate biomarkers including the rarity of HSP, clinical and genetic heterogeneity of HSP and slow disease progression.

Methods We performed a search on PubMed and Medline using the search terms (‘hereditary spastic paraplegia’ OR ‘spastic paraparesis’) AND ‘biomarker’*. We searched the reference lists of relevant articles to identify further studies. We collected data on number of participants, HSP genotype, methodology, and outcomes.

Results 72 papers were identified: 2 on Rating scales, 9 on gait analysis, 33 on neurophysiological measures, 23 on neuroimaging markers and 5 on biochemical markers. The studies reviewed demonstrated variation in methodologies and outcomes, including mixed genotype (41/72 papers) and genotype-specific (31/72 papers) patient cohorts, varied neurophysiological techniques and different outcome measures. 68/72 studies reviewed had small patient numbers (<50 patients). All potential biomarkers reviewed were able to differentiate HSP patients from controls. Only diffusion tensor imaging (DTI) parameters showed significant correlation with disease severity.