evaluated off-DBS and during stimulation delivered through each electrode contact in a randomised order. 

Results ERNA amplitude, beta power and contact proximity to the anatomically ideal stimulation location predicted magnitude of therapeutic response to DBS. However, after exclusion of covariance, ERNA amplitude remained the only significant predictor of DBS response.

Conclusion ERNA is a readily recordable, large amplitude signal that accurately correlates with motor response to DBS. It holds significant potential as a biomarker for guiding electrode implantation, ideal contact selection, automated parameter fitting and delivery of closed-loop DBS.

REFERENCE

004 VESTIBULAR EVENT MONITORING IN THE EMERGENCY DEPARTMENT
1,2Benjamin Nham*, 1Nicole Reid, 1Emma Argaet, 1Allison Young, 1Kendall Bein, 1Gabor M Halmagyi, 1,2Miriam S Welgampola. 1,2Benjamin Nham*, 1Nicole Reid, 1,2Emma Argaet, 1,2Allison Young, 1Kendall Bein, 1Gabor M Halmagyi, 1,2Miriam S Welgampola. 1Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 2Central Clinical School, University of Sydney, Camperdown, NSW, Australia, 1Emergency Medicine, Department of Emergency Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia

INTRODUCTION
Acute vertigo is often accompanied by ictal-nystagmus which may assist with diagnosis. We examined the merits of a structured assessment combined with vestibular event-monitoring in the Emergency Department (ED).

METHODS
We undertook a structured clinical assessment and video-nystagmography in 220 non-consecutive patients presenting to a public-hospital ED with acute vertigo, during a 10-month period. The records of 115 consecutive vertiginous patients who underwent standard-assessment were compared.

RESULTS
For the structured assessment group: 54% presented with acute vestibular syndrome (AVS), 24% with episodic spontaneous vertigo (EVS), and 20% with recurrent positional-vertigo (RPV).

For AVS (n=119), most common diagnoses were vestibular neuritis (34%), stroke (stroke (34%) and vestibular migraine (13%). Nystagmus slow-phase velocity (SPV) for VN, stroke and VM were 11±5.5%/s, 5.6±2.5%/s, 5.4±5.9%/s; Mean ipsilesional video-head impulse gain was 0.51±0.29, 0.89±0.20 and 0.96±0.13. For EVS(n=53), diagnoses included vestibular migraine (63%), Meniere’s Disease (11%) and others (26%). Nystagmus SPV was 5.4±3.6%/s, 7.6±6.3%/s, 4.1±1.5%/s. In RPV (n=43), common diagnoses were posterior-canal BPPV (66%), horizontal-canal BPPV (23%), migraine (7%). Positional nystagmus profile showed Peak SPV of 42.5%/s, 77.6%/s, 20.64%/s and Time-constants of 6.52s, 22.51s, 34.56s for Posterior-canal BPPV, Horizontal-canal BPPV and Atypical Positional-Vertigo. A final diagnosis was reached in 96% of patients.

In the ED control group, only 77% were separated into spontaneous or positional-vertigo. A diagnosis was provided in 57% and was concordant with the history and examination in 34%.

Conclusion Vestibular event-monitoring and structured clinical assessment secured a diagnosis in 96% of cases compared with 34% for the control group, reinforcing its merit.

005 ELECTROCLINICAL CHARACTERISTICS OF AUTOIMMUNE ENCEPHALITIS AS OUTCOME BIOMARKERS
1,2Robb Wesselingh*, 1,2James Broadley, 4Chris Kyndt, 4Katherine Buzzard, 1,2Terence O’Brien, 1,2Mastura Monif. 1Neurosciences, Monash University, Melbourne, VIC, Australia; 2Neurosciences, Alfred Health, Melbourne, VIC, Australia; 3Neurosciences, Monash Health, Melbourne, VIC, Australia; 4Neurosciences, Melbourne Health, Melbourne, VIC, Australia; 1Neurosciences, Eastern Health, Melbourne, VIC, Australia

INTRODUCTION
Seizures are a common characteristic of Autoimmune encephalitis (AIE). The use of the electroclinical characteristics to assist in the diagnosis of AIE has been explored1 however use of specific electroencephalogram (EEG) changes has not been examined with regards to outcome prediction.

METHODS
Patients with AIE were recruited retrospectively across 4 hospitals in Victoria. Clinical Data was collected during admission and at final follow-up. EEGs of patients were reviewed using an objective proforma. Associations between EEG biomarkers and clinical outcomes were demonstrated using logistic regression modelling.

RESULTS
We recruited 88 patients with AIE and available EEGs. Presence of rhythmic delta, superimposed fast activity and an abnormal background were significantly more common in N-methyl-D-aspartate receptor (NMDAR) antibody associated AIE patients (p<0.05). ICU admission was associated with rhythmic delta epileptiform activity (OR 3.25, p=0.046), sharp elements in the EEG abnormality (OR 3.55, p=0.05), and an abnormal background rhythm (OR 3.56, p=0.03).

Development of drug resistant epilepsy was associated with prolonged duration of abnormality on EEG (OR 11.99, p=0.013), and sharp elements in the EEG abnormality (OR 7.29, p=0.02).

CONCLUSION
We have identified EEG biomarkers that differentiate NMDAR AIE from other subtypes, and likely represents an objective description of extreme delta brush which has previously been described in NMDAR AIE.2,3 We have also demonstrated biomarkers associated with important outcomes that can be used to help guide treatment and prognosis.

REFERENCES

006 CAN SEIZURE-RELATED HEART RATE DIFFERENTIATE EPILEPTIC SEIZURES FROM PSYCHOGENIC NON-EPILEPTIC SEIZURES?
1Hue Mun Au Yong*, 4Erica Minato, 2Eldho Paul, 1,2Udaya Seneviratne. 1Neurology Department, Monash Health, Clayton, VIC, Australia; 2Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, VIC, Australia; 3Department of Medicine, St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia

INTRODUCTION
This study aims to (i) evaluate the diagnostic sensitivity, specificity and predictive values of seizure-related heart rate (HR) in differentiating epileptic seizures (ES) from