followed by plasma exchange. Then given high dose oral corticosteroids with slow tapering and intravenous Cyclophosphamide four weekly. Significant neurological improvement noted over next 8 weeks with patient being alert and participating in ongoing multidisciplinary rehabilitation for hemiplegia.

Conclusion A case of cerebral biopsy confirmed, CSF and serum antibody-negative encephalitis is presented.

Introduction Electrodagnostic evaluation is crucial in establishing the diagnosis of motor neuron disease (MND) and excluding other pathologies. It is recommended that sensory nerve conduction studies (NCS) include the ulnar and sural nerves, and generally accepted that sensory nerves are normal in MND. There are however previous reports in the literature documenting variable sensory abnormalities in patients with MND. We sought to determine the frequency of unexplained sensory abnormalities seen on NCS in patients with MND.

Methods Medical records of patients attending our tertiary MND clinic over a 2 year period were reviewed. We identified 92 patients with a clinical diagnosis of MND for whom electrodagnostic studies were available to review. Sensory abnormalities in patients without a clear underlying aetiology (eg. compressive neuropathies, diabetes) were considered unexplained.

Results Unexplained sensory abnormalities were detected in at least one nerve in 18/92 (20%) patients. In 17 of those 18 patients, the ulnar sensory response was abnormal. 12 of 18 patients demonstrated abnormalities in 2 or more sensory nerves. Sensory abnormalities were present in 4 of 37 (10.8%) patients with bulbar onset MND and 14 of 55 (25.4%) patients with limb onset MND. Sensory symptoms were infrequently reported and did not correlate with abnormalities found on NCS.

Conclusions Unexplained sensory nerve action potential abnormalities are not uncommon in MND, in which sensory responses the most frequently affected. These findings raise the possibility of sensory nerve pathology in patients with MND and suggest that the presence of unexplained sensory abnormalities should not exclude a diagnosis of MND.

Introduction Glial fibrillary acidic protein (GFAP) astrocytopathy is a lesser recognised immune-mediated meningo-encephalomyelitis, which is steroid responsive in the majority of cases. Neuroimaging has unique with a distinct symmetric white matter perivascular linear and punctate enhancement pattern. We present a case with classical phenotype but delayed clinical response, and highlight the importance of early recognition and treatment.

Case A 59-year-old Caucasian female presented with a two month history of headache, gait disturbance, insomnia, agitation, disorientation and reduced oral intake. Examination revealed a high frequency upper limb tremor, hypertonicity and pathologically brisk reflexes with impaired cognitive function. MRI brain and spinal cord demonstrated high T2 signal and striking perivascular and punctate enhancement in supratentorial white matter, cervical and upper thoracic cord. CSF examination revealed lymphocytic pleocytosis and elevated protein. Brain biopsy demonstrated reduced GFAP expression, perivascular T-lymphocytic infiltrate, and recent white matter microinfarction. CSF and serum GFAP antibodies were positive.

Motor deterioration accompanied progression to a stuporous state. High dose corticosteroids were commenced, followed by intravenous immunoglobulin and mycophenolate. While there was marked improvement of perivascular contrast enhancement on imaging, the patient continued to demonstrate prominent tremor, gait disturbance and behavioural issues 9 months following symptom onset.

Conclusions The persistence of disability in this case is likely the result of axonal loss from the initial insult, reflected by the biopsy evidence of microinfarction. Awareness of the unique pattern on MRI and the clinical phenotype will aid in early recognition and prompt treatment of this condition, thus preventing the potential long term morbidity.
LYMPHOMA: A GREAT IMITATOR IN NEUROLOGY AND ITS MANY FACES

1Wei Z Yeh*, 2Subramanian Muthusamy, 3Penny McKenzie, 3Steven Collins, 3Ann French, 4Robin Flishie, 4Katrina Reardon. 1Department of Neurology, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia; 2Department of Pathology, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia; 3Department of Haematology, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia.

Introduction The label ‘great imitator’ refers to conditions which can cause varied manifestations and mimic diseases. Lymphoma is worthy of this title. We present three cases.

Cases 1: 66-year-old man with progressive vertical diplopia and unsteady gait over four weeks. MRI brain and spine demonstrated a supratentorial para-falcine soft tissue lesion, mid-thoracic cord enhancement and right axillary mass. Serum ACE was elevated. Serum HIV serology was positive. Right axillary mass core biopsy diagnosed Burkitt lymphoma.

2: 50-year-old man with a 4-week history of constitutional symptoms on a background of ITP and splenomegaly. During admission he developed urinary retention, bilateral lower limb weakness and numbness and confusion. Infectious and vascular screens were unremarkable. CT chest, abdomen and pelvis showed splenomegaly. CSF and bone marrow analyses were unremarkable. CT chest, abdomen and pelvis were mediurally refractory (requiring VP/LP shunting). Ophthalmology services initiated 51% (23/45) of the referrals.

Conclusions Our incidence rates are higher than rates in previous studies for population subsets of young women.

THE GASTROINTESTINAL MICROBIOME IN PARKINSON’S DISEASE: IMPACTS OF MOTOR AND NON-MOTOR FEATURES, MEDICATIONS, LIFESTYLE AND DIET

Mishal Lubomski*, 1Ai Huey Tan, 2Shen-Yang Lim, 3Andrew Holmes, 4Ryan L Davis, 4Carolyn M Sue. 1Department of Neurogenetics, Koala Institute, University of Sydney and Royal North Shore Hospital, Sydney, NSW, Australia; 2Neurology Department, Mah Poh Sook and Fan Chin Nam Centre for Parkinson’s and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 3School of Life and Environmental Sciences, The Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.

Introduction The human gastrointestinal microbiome (GM) has been proposed to be integral in the pathogenesis of Parkinson’s disease (PD). Evidence supports a bidirectional interaction between the brain and the gut that is mediated by the GM. Dysbiosis of the GM is believed to negatively influence vital physiological functions in many diseases.

Methods We reviewed the literature on changes in human physiological function associated with gut microbial community states in PD. In particular, we evaluated the literature for effects of GM dysbiosis on motor and non-motor features, dietary and lifestyle factors and medication use in PD.

Results Altered GM profiles in PD have been suggested to disrupt vital signalling pathways within the microbiota-gut-brain axis, integral to regulating physiological digestive function and metabolic homeostasis. Unfavourable variations in the GM have been shown to perturb mood (anxiety/depression), cognition, perception (hallucinations/delusions), gastrointestinal motility, including constipation in PD. Further, varied clinical motor phenotypes, including postural instability and gait disturbance have been attributed to alterations in the GM, in addition to the use of catechol-o-methyltransferase inhibitors, anticholinergics and levodopa. Variations in dietary and lifestyle factors have also been inferred to cause alterations in GM profiles, including caffeine consumption, macronutrient intake, smoking and the effects of ageing and exercise.

Conclusions It is apparent from the mounting evidence that alterations in the GM are intimately involved in PD pathogenesis. However, the GM can also be modulated by dietary, lifestyle and treatment factors that may influence motor and non-motor features as well as disease progression.