impending synucleinopathy with over 90% developing either Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB) or Multiple System Atrophy (MSA) after 15 years. This finding has stimulated efforts to actively register and track progression of such patients. Here we present experience of a biobanking program established with the aim of identifying prodromal synucleinopathies to facilitate recruitment to neuroprotective trials as they become available.

Methods Patients with iRBD were prospectively and sequentially recruited. Cross-sectional comparator groups consisting of healthy controls, idiopathic PD (within 5 years of diagnosis) and DLB were also recruited. Patients underwent a standardized assessment protocol including clinical phenotyping, neuropsychometric testing, multimodal MRI, polysomnography, standardized assessment protocol including clinical phenotyping, neuropsychometric testing, multimodal MRI, polysomnography, quantitative electroencephalography, chronobiology (melatonin and clock gene expression profiling) and gait testing. Subjects were invited for annual and biennial review.

Results 102 patients have been recruited into the study since July 2016, including 35 patients with iRBD, 26 DLB, 19 early PD and 16 controls. 15 patients have returned for follow-up with 3 converting to a synucleinopathy(2 DLB, 1 PD). 75% of participants were able to complete all elements of assessment protocol. Preliminary evaluation of iRBD participants reveals early changes in clock gene expression (BMAL1) and subtle changes in patterns of gait compared to older controls.

Conclusions Our preliminary findings demonstrate utility and feasibility of a prodromal biobanking program within the Australian context aimed at identifying prodromal synucleinopathies. Similar models can be applied to other centers to improve access and create an extended national collaborative network.


Lauren Giles*, Uwe Reuter, Peter Goodson, Michel Lantet-Minet, Peggy Hours-Zesiger, Chrystel Fernandes, Michel Ferrari, Jan Klatt, Austin Health, Melbourne, VIC, Australia; Department of Neurology, Charité Universitäts Medizin, Berlin, Germany; University of California, San Francisco, USA; Pain Department, Université Côte d’Azur, Nice, France; Novartis Pharma AG, Basel, Switzerland; Leiden University Hospital, Leiden, Netherlands

Introduction To assess efficacy of erenumab in the first three months of the open-label extension phase (OLEP; 13–24 weeks) of the LIBERTY study.

Methods In the double-blind treatment phase (DBTP), 246 patients were randomized to placebo and erenumab 140 mg for 12 weeks, following which patients completing that phase (N=240) were enrolled in OLEP, to receive monthly erenumab 140 mg. Outcomes measured monthly throughout to week 24 were achievement of at least 50%/75%/100% reduction in monthly migraine days (MMD), change from DBTP baseline in MMD, monthly acute migraine-specific medication days (MSMD), Headache Impact Test (HIT-6TM) total score, everyday activities (EA) and physical impairment (PI) as measured by the Migraine Physical Function Impact Diary (MPFID).

Results Overall, 228/240 (95.0%) patients completed the 24 week visit of the OLEP. In the overall population at Week 24, 39.2%, 15.9% and 7.0% of patients achieved ≥50%/≥75%/≥100% reduction in MMD. The mean (standard deviation) change from DBTP baseline in MMD was –2.7(4.4) and –1.4(3.0) in MSMD; and –7.6(8.0), –2.5(9.2) and –4.0 (9.0) in HIT-6TM, MPFID-PI and MPFID-EA scores respectively. Patients with continuous use of erenumab showed sustained efficacy in all outcomes assessed. Patients who switched from placebo to erenumab in the OLEP showed improvement from the first measurement at Week 16 on all outcomes assessed.

Conclusions Efficacy of erenumab was sustained throughout 24 weeks in a hard to treat patient population with multiple prior preventive treatment failures. Overall, efficacy data over 24 weeks (assessed over weeks 13–16,17–20 and 21–24) was generally in line with prior erenumab trials.