Results In the first calendar 12 months of operation, the Melbourne MSU operated 30.5 service weeks and provided prehospital thrombolysis (pTA) to n=52 patients (44% of eligible infarcts) and directed n=33 patients for endovascular thrombectomy, of which 48% required bypass from the closest non-thrombectomy hospital. The overall median onset-to-tpa for MSU patients was 97.5 mins compared to the Australian metropolitan median of 150 mins. Thrombolysis in the first ‘golden hour’ increased to 13.5% from 3.3% in-hospital. Median onset-to-groin for MSU patients receiving EVT was 162 mins compared to 234 mins from historical controls.

Discussion Prehospital treatment and triage using the Mobile Stroke Unit in metropolitan Melbourne resulted in substantial improvements in commencement of reperfusion therapy. Work-flow times are approximately halved for thrombolysis and endovascular thrombectomy respectively. Prehospital thrombolysis also allowed a >400% increase in the proportion of treatment in the first ‘golden hour’.

012 MECHANICAL THROMBECTOMY IN PEDIATRIC STROKE: SYSTEMATIC REVIEW, INDIVIDUAL PATIENT-DATA META-ANALYSIS, AND CASE SERIES

1,2Kartik Bhatia, 3Hans Kortman, 4Chris Blair, 2Geoffrey Parker, 2David Brunacci, 1,2Tim Ang, 3John Worthington, 4Prakash Muthusami, 1Timo Krings. 1Department of Interventional Neuroradiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 2Department of Interventional Neuroradiology, The Hospital for Sick Children, Toronto, Ontario, Canada; 3Department of Interventional Neuroradiology, Sydney Children’s Hospital, Randwick, NSW, Australia; 4Department of Interventional Neuroradiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia

Discussion In adults, there is strong evidence demonstrating

Results In paediatric patients, MT is an effective treatment for ischaemic stroke due to LVO. In the absence of a dedicated prospective registry and with randomized control trials

unfeasible, this report represents the best available evidence for the use of MT in the paediatric setting.

013 THE IMPACT OF AGGRESSIVE BLOOD PRESSURE MANAGEMENT IN THE POST-THROMBOLYSIS SETTING

1Bethan Harper*, 2Harry McNaughton, 3Anna Ranta. 1Neurology, Capital and Coast District Health Board and University of Otago, Wellington, New Zealand; 2Medical Research Institute of New Zealand, Wellington, New Zealand; 3Capital and Coast District Health Board and University of Otago, Wellington, Wellington, New Zealand

Discussion The role of MT in the paediatric stroke population is less

Results Pre-protocol change 68 and post-100 patients were thrombolysed. Baseline characteristics were similar between groups. There was a trend for a lower rate of SBPs >180 mmHg (adjusted OR 0.49; 95% CI 0.31–1.1; p=0.097) and a significantly higher rate of SBPs <120 mmHg (adjusted OR 3.06; 95% CI 1.52–6.17; p=0.002) in the aggressive BP protocol group; although events of extreme SBPs (>200 and <100 mmHg) were similar between groups. Favourable outcomes (mRS = 0–2) at 3 months were similar between groups (adjusted OR 1.27; 95% CI 0.58–2.8; p=0.36) as was the rate of symptomatic haemorrhages (adjusted OR 1.26; 95% CI 0.28–5.7; p=0.76). Model fit was improved by adding study group to the model.

Conclusions More aggressive post-thrombolysis BP management lowered the overall BP, but did not result in improved patient outcomes. Potential explanations include a small sample size, reduced cerebral perfusion off-setting reduced bleeding risk, or high BP being merely an epiphenomenon of worse outcome rather than causative.

014 AVXS-101 GENE-REPLACEMENT THERAPY (GRT) IN PRESYMPOMATIC SPINAL MUSCULAR ATROPHY (SMA): STUDY UPDATE

1Michelle Farrar*, 2Kathryn J Svaboda, 3Meredith Schultz, 4Hugh McMillan, 5Julie Parsons, 6Ian E Alexander, 2EJ, 3Elaine Kernbauer, 1Marcia Farrow, 1Francis G Ogrinc, 4Douglas E Feltner, 4Bryan E McGill, 4Sidney A Specter, 1James L’Italien, 3Douglas M Spruille, 4Kevin A Strauss. 1Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; 2AveXis, Inc., Bannockburn, IL, USA; 3AveXis, Inc., Bannockburn, IL, USA; 4Department of Pediatrics, University of Otago, Wellington, Wellington, New Zealand; 5Department of Neurology, Children’s Hospital Colorado, Aurora, CO, USA; 6Gene Therapy Research Unit, Children’s Medical Research Institute and The Children’s Hospital at Westmead, Sydney, NSW, Australia; 7Clinic for Special Children, Strasbourg, PA, USA

Discussion SMA is a neurodegenerative disease caused by biallelic deletion/mutation of the survival motor neuron 1