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Table 1  Classical clinical features of UMN and LMN syndromes

Clinical sign UMN syndrome LMN syndrome

Weakness ‘Pyramidal’ distribution, that is, hip flexor and 
foot dorsiflexor predominant

Focal or multifocal, often in peripheral nerve 
or root distribution

Loss of distal dexterity Present Absent if no sensory loss

Slowness and simplification of movement Present Absent

Poor balance responses Present Absent

Fatigue Present Present

Muscular atrophy Slight or absent Prominent in weak muscles

Muscular tone Increased with spasticity Reduced in weak muscles

Deep tendon and superficial reflexes Tendon reflexes increased or superficial 
reflexes diminished

Tendon reflexes reduced or absent superficial 
reflexes normal or reduced

Babinski response (and related responses) Present Absent

Fasciculation Absent Present

Note that these traditional criteria do not include any higher-order functional tests in the case of UMN disorders, which could distinguish 
frontotemporal cerebral dysfunction from limited lesions in the corticospinal tracts in the brainstem or spinal cord. Internal capsular lesions 
frequently involve non-corticospinal descending pathways, in addition to the corticospinal pathways themselves.
LMN, lower motor neuron; UMN, lower motor neuron.

Introduction
The diagnosis of amyotrophic lateral sclerosis (ALS) 
requires recognition of both lower motor neuron 
(LMN) and upper motor neuron (UMN) dysfunc-
tion.1 However, classical UMN signs are frequently 
difficult to identify in ALS.2 LMN involvement is 
sensitively detected by electromyography (EMG),3 
but, as yet, there are no generally accepted markers 
for monitoring UMN abnormalities,4 the neurobi-
ology of ALS itself and disease spread through the 
brain and the spinal cord.5 Full clinical assessment 
is therefore necessary to exclude other diagnoses 
and to monitor disease progression. In part, this 
difficulty regarding detection of UMN involvement 
in ALS derives from the definition of ‘the UMN 
syndrome’. Abnormalities of motor control in ALS 
require reformulation within an expanded concept 
of the UMN, together with the neuropathological, 
neuroimaging and neurophysiological abnormali-
ties in ALS. We review these issues here.

The LMN
Sir Charles Sherrington (1857–1952) defined the 
LMN6 7 as the anterior horn cell and its motor axon, 
constituting the final common pathway for reflex 
action.8 In 1906, Sherrington,7 following Hugh-
lings Jackson’s insights, concluded that motor acts 
were initiated in the brain by sensory input, thus 
building on activation of this simple reflex pathway, 
a view further developed by Sir Francis Walshe 
(1885–1973).9 Merton10 likened the effect of reflex 
action to a follow-up length servo, an influential 
hypothesis that was subsequently modified as servo 

assistance to emphasise that stretch reflexes support 
movement, generated centrally, rather than drive 
it.11 12 Despite these ideas, the UMN syndrome is 
not well defined.7 13–15

The UMN
The clinical criteria (table 1) used by generations of 
neurologists to define the ‘corticospinal’ or ‘pyra-
midal’ syndrome, a term frequently but erroneously 
regarded as synonymous with ‘UMN syndrome’, 
rest on surprisingly uncertain pathophysiological 
underpinnings. The term UMN was introduced by 
Sir William Gowers (1845–1915) in his manual of 
neurology,13 published before Sherrington’s work.14 
Later, the anatomist, Alf Brodal (1910–1988), 
emphasised that the UMN16 consists not just of 
corticospinal fibres but of all those fibres with motor 
functions that descend through the pyramids in the 
lower brainstem on each side. The UMNs there-
fore include crossed and uncrossed corticospinal 
tracts (CSTs) and corticobulbar, tectospinal, rubro-
spinal, vestibulospinal and reticulospinal tracts, as 
well as various short internuncials and cerebellar 
connections.15–17 The CSTs constitute only 2%–3% 
of fibres in the pyramidal UMN pathway.18 They 
provide direct connections between Betz ‘giant’ cells 
in the primary motor cortex and anterior horn cells 
in the anterior spinal grey matter and, also, through 
corticobulbar connections to neurons in the bulbar 
motor nuclei. This corticospinal projection consists 
of large-diameter (>10 µm), thickly myelinated, 
monosynaptic, fast-conducting motor efferents. 
However, most fibres passing caudally through the 
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pyramids are much smaller, <4 µm in diameter.9 18 The majority 
of fibres in the medullary pyramids have indirect, polysynaptic 
projections to spinal interneurons and motoneurons. In addition 
to the well-known monosynaptic corticomotoneuronal projec-
tion, in cats, macaques and humans, corticospinal axons have 
disynaptic projections to upper-limb motoneuron pools through 
propriospinal neurons located in the C3–C4 levels. This relay 
allows the corticospinal command to be modulated before it 
reaches the segmental level through a combination of feedback 
from the moving limb and feedforward inhibition from supra-
spinal centres. Within these diverse efferent motor projections, 
there are additional descending fibres derived widely from the 
cerebral cortex, including the sensory cortex, that also project to 
interneurons and primary motor neurons in the anterior horns of 
the cord, as well as to sensory neurons in the dorsal horn. These 
descending projections modulate both sensory input to the cord 
and its motor output.19 In summary, the grey matter of the spinal 
cord is a busy place, and much of what goes on there is not under 
direct voluntary control. This is consistent with the semiauto-
matic nature of rapid object grasping. As Lemon19 summarised, 
‘the descending pathways function as part of a large network 
rather than as separate controllers of the spinal cord’ and ‘the 
spinal cord functions as part of the brain not as its servant’. The 
clinical terms ‘pyramidal syndrome’ or UMN syndrome conceal 
a complex motor system.9 15

The clinician’s corticospinal syndrome
Hughlings Jackson20 made detailed studies of the clinical features 
of hemiplegia in stroke. He drew attention not only to nega-
tive features, such as loss of strength and orienting responses, 
but also to positive features, such as increased muscular tone 
and a brisk knee jerk. The Babinski response was incorporated 
later (table 1).21–23 In hemiplegia, Jackson recognised residual, 
voluntary limb motor function and characteristic resting limb 
and body postures. For these and other reasons, especially those 
related to his observation of the ‘march of focal epilepsy’, he 
concluded that movements were represented in the cerebral 
cortex and muscles in spinal segments, a view that remains gener-
ally accepted.24 Modern descriptions of lesions ascribed to the 
pyramidal pathway emphasise weakness, loss of dexterity, slow-
ness and poverty of hand movements, brisk tendon reflexes, a 
spastic increase in muscle tone and the extensor plantar response 
(table 1). Spasticity and weakness do not necessarily coexist, and 
probably relate to dysfunction in different pathways. Denny-
Brown and Botterell25 found that ablation of Brodmann cortical 
area 4 in the macaque led to flaccid hemiparesis, followed in a 
few days by increased tendon jerks and hypertonic distal limb 
segments, whereas ablation of Brodmann area 6 caused a more 
widespread hypertonus resembling the clinician’s ‘extrapyra-
midal rigidity’.25 However, in the macaque, Fulton described 
spasticity, hemiparesis and apraxia after area 6 ablation.26 Much 
therefore depends on the site and the extent of any lesion in 
the motor system, and also on the ability of researchers to 
examine primates as fully as human subjects. Walshe9 reviewed 
these and earlier experiments, including early ablation studies 
in primates,27 and studies of electrical stimulation of the cere-
bral cortex in humans.28 He drew the important conclusions that 
cortical electrical stimulation was likely to be dependent on the 
characteristics of the stimulation technique, a factor difficult to 
quantify.9

Tower29 found that section of the pyramid at the medullary 
level in monkey caused a ‘grave and general poverty of move-
ment’ and initial hypotonia. Fine, discrete movements were lost, 

and there was impairment of aim and precision of movement 
performance, that is, poverty of movement with loss of dexterity. 
In the chimpanzee, but not in the monkey, a Babinski reflex could 
be elicited, and there was increased proprioceptive grasping in 
the upper limb. In searching for methods to alleviate Parkinso-
nian tremor, Bucy30 31 surgically sectioned the human ipsilateral 
cerebral peduncle. There was less resultant paresis than antic-
ipated and remarkable recovery occurred, but with persistent 
impairment of fine manipulative finger and hand movements. 
Electrical stimulation of the uninjured peduncle delineated a 
medial frontopontine bundle, associated with hand and forearm 
movements, and a more lateral temporopontine tract. Mid or 
upper cervical pyramidotomy, as reported by Lassek et al32 for 
surgical alleviation of tremor, caused paralysis below the site of 
the lesion that gradually improved, with considerable residual 
impairment of upper-limb movements, weakness of foot dorsi-
flexion, increased tendon reflexes and a Babinski response.32

The functions of the complex motor pathways at the brain-
stem level were addressed by Lawrence and Kuypers in their 
now-classic primate experiments.33–35 After bilateral pyrami-
dotomy at the olivopontine level that interrupted the cortico-
spinal pathway from cortical area 4, climbing behaviour, as an 
example of whole body movement, was largely intact, but there 
was impaired speed and fluency. There was loss of dexterity of 
hands and digits in retrieving food rewards, and isolated actions, 
such as reaching and grasping, were also severely and perma-
nently affected. Subsequent interruption of the ventromedial 
descending motor pathway in the medial reticular formation in 
the floor of the fourth ventricle, consisting of descending fibres 
from the tectum, the pontine and medullary medial reticular 
formation and the vestibular complex, caused loss of righting 
responses, impaired unsupported sitting, walking and climbing 
and of head, shoulder and trunk movement, but without loss of 
automatic hand grasping. Lesions of the magnocellular rubro-
spinal fibres in the lateral medullary brainstem pathway that 
project to the dorsolateral zones of the spinal anterior horns 
caused loss of ipsilateral hand movements, with a persistent 
posture of flexion of the arm and extension of the fingers. Bilat-
eral pontine lesions caused similar abnormalities.

Lawrence and Kuypers’ work confirmed that the brain motor 
system consists of much more than the CST and the primary 
motor cortex.33 34 They concluded that the ventromedial brain-
stem pathways are the basic system by which the brain controls 
bodily movement, maintenance of posture, and integration of 
body-limb movements and locomotion, while the lateral brain-
stem pathway confers the ability to superimpose independent 
movements of the extremities, especially the hand, and the 
corticospinal pathways facilitate further fractionation of move-
ment, especially finger movements. The lateral CSTs project to 
the intermediate internuncial zone of the ventral spinal grey 
matter, linked to motor neurons innervating muscles of the distal 
extremities. Corticospinal neurons originating in M1 project 
directly to these spinal motor neurons and to the ventromedial 
intermediate zone controlling trunk and limb–girdle muscles. 
In addition, some fibres in the CSTs originate in the primary 
somatosensory cortex and terminate in the spinal dorsal horn. 
Single corticomotoneurons and their pyramidal tract axons 
project to multiple muscles in the primate upper limb, though 
usually with a stronger projection to one muscle, stronger and 
more widespread to extensor muscles than flexors, and stronger 
distally than proximally.36 There may be plasticity at the corti-
comotoneuronal synapse, since connectivity is altered by move-
ment in primates,37 and segmental interneurons are active during 
voluntary movement.38
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As in the cat39 and the macaque,40 in human subjects the CST 
projects to upper cervical propriospinal neurons, which then 
relay some of the corticospinal command to upper-limb motor 
neurons.41 42 This allows updating of the motor command by 
sensory feedback from the moving limb.43 There seem to be no 
such projections to the intrinsic muscles of the hand.

The UMN deficit in ALS
The UMN features (table 1) in ALS are not typical of the classic 
UMN syndrome (table 1). For example, the plantar responses 
may be downgoing, even in the presence of other classical UMN 
features.2 UMN lesions cause loss of the local extensor reflexes, 
such as the plantar reflex response, and also the abdominal and 
cremasteric reflexes, and disinhibition of the flexion withdrawal 
response, manifested by activation of extensor hallucis longus 
and therefore a dorsiflexor (extensor) Babinski toe response,44 
but this will depend on the force exerted by these opposing 
reflex systems, which may be disrupted by the motor network 
disorder in ALS. In In ALS, there is widespread involvement of 
the UMN2 beyond the archetypal corticospinal lesion familiar 
from internal capsular infarction.16 20 Attribution of components 
of the motor syndrome in ALS specifically to UMN or LMN 
dysfunction is difficult since both are usually present. LMN 
features often predominate, and spasticity and increased reflexes 
may be subtle.2 The progressive pattern of LMN weakness and 
atrophy in ALS suggests a relatively orderly spread from a clin-
ical site of origin,45 perhaps representing spread by contiguity in 
spinal segments,46 47 but ‘skip lesion’ weakness and atrophy also 
occur,48 49 and a central nervous system (CNS) origin for these 
phenomena has been proposed.50

Kinnier Wilson51 taught that flexor muscles are earlier and 
more severely affected than extensors, although long exten-
sors of the forearm are weakened before long flexors. In the 
hand, the abductor pollicis brevis and the first dorsal interro-
seous muscles are particularly susceptible, but the abductor digiti 
minimi is relatively spared. This ‘split hand’52 has been linked 
to the dense corticospinal innervation of the more susceptible 
muscles53 associated with their importance in thumb movement 
and grasping,50 but this pattern of wasting is inconstant and 
other, perhaps related, explanations are possible.54 The motor 
syndrome in ALS includes abnormalities of stance and balance 
and of foot placement, sometimes with features consistent with 
loss of orienting reflexes.55 Hand and finger movements are 
often markedly affected, with loss of dexterity and slowness of 
movement, sometimes described as clumsiness, in addition to 
objective weakness of grasp and other hand and finger move-
ments. The gait is also clumsy and unreactive to barriers, as in 
managing ambulation over a rough surface. When there is bulbar 
involvement, the normal precise coordination of respiratory 
pattern, voice, speech, swallowing, saliva management and facial 
movement is impaired, causing degradation and coarseness of 
all these functions. These deficits result from degeneration of 
small-fibre propriospinal rather than corticospinal motor path-
ways and their central network connections, as shown by the 
Lawrence and Kuypers experiments described previously.

Higher-order functional motor deficits in ALS
Loss of dexterity is a well-recognised feature of the UMN 
syndrome in stroke.56 When the CST is damaged, recovery of the 
function of intrinsic muscles of the hand is less reliant on oligo-
synaptic corticospinal and other descending inputs because they 
are the only upper-limb muscles to receive an exclusively mono-
synaptic (and lateralised) corticospinal input.42 In his textbook, 

Kinnier Wilson commented on prominent ‘awkwardness of 
fine finger movements’ in the early stages of ALS, despite only 
slight weakness and the absence of spasticity’.51 This forgotten 
observation suggests a higher-order motor defect, or apraxia, 
associated with frontotemporal cortical atrophy and the asso-
ciated tract degeneration that characterise the CNS disorder in 
ALS and ALS-FTLD (frontotemporal lobar dementia). Higher-
order motor deficits are particularly evident in behavioural 
variant FTLD, manifested by motor slowness and loss of intu-
itive, complex patterns of voluntary movement and dominated 
by a prominent frontal executive syndrome with frontal and 
prefrontal cortical atrophy, with or without an associated ALS 
syndrome.

The term apraxia has not been applied to the motor disorder 
in ALS perhaps because this extends the concept of apraxia 
beyond its classical definition as a higher-order motor disorder 
in the absence of focal neurological signs, especially weakness 
or sensory loss.57 58 However, in modern usage, apraxia due to 
loss of specialised cortical function from focal lesion or degen-
eration has been termed ‘hodological apraxia’, and disconnec-
tion syndrome due to fibre tract degeneration has been termed 
‘topological apraxia’.59 Cortical and pathway lesions may 
induce increased or decreased excitability in the damaged motor 
system.59 Recognition of higher-level motor disturbances in ALS 
extends understanding of the UMN or central motor dysfunc-
tion. Patients with ALS require marked effort to achieve adequate 
velocity and precision of movement, but retain the ability to 
imagine and describe motor components necessary to perform 
fine graduated movements. Thus, the core features of ideomotor 
apraxia are absent in ALS,57 58 although they may be recognisable 
in ALS-FTLD. In ALS, the cortical disorder and secondary motor 
tract degeneration cause disconnection of the cerebral motor 
systems from the spinal cord motor systems, including propri-
ospinal motor connections and proprioceptive control mecha-
nisms. Disruption and slowness of movement in ALS result both 
from degeneration in descending motor pathways and loss of 
control mechanisms, for example, connections to basal ganglia 
and cerebellum that normally fine-tune the motor drive.

Neuropathology of the UMN in ALS
Pathological studies of the CNS in ALS are inevitably limited 
to end-stage disease. The first descriptions of cellular pathology 
in the motor cortex and subcortical motor pathways derive 
from Marie, who, with Charcot, described ‘atrophy of the large 
pyramidal cells of the cortex’, loss of these cells and ‘numerous 
granular bodies’ in the subcortical white matter, interpreted 
as degenerating corticofugal fibres.60 61 Degeneration of corti-
cofugal fibres was traced through the internal capsule into the 
cerebral peduncles, the medullary pyramids and the spinal cord 
but was not seen at a higher level,62–64 in contrast to the pattern 
of degeneration following vascular lesions of the motor cortex 
in which the process progressed caudally, a ‘dying forward’ 
process.60 Marie therefore dismissed the notion that, in ALS, 
degeneration of the CST proceeds caudally from the motor 
cortex to the spinal cord, in parallel with loss of spinal motor 
neurons: ‘Unfortunately, gentlemen, this seductive theory very 
imperfectly explains the morbid process which produces ALS 
and serious objections may be made to its adoption’.60 This 
puzzle remains unresolved’65 but is consistent with emerging 
concepts of ALS as a network connectivity disorder.

There is variable loss of pyramidal neurons in ALS, particu-
larly Betz cells, in the primary motor cortex and surrounding 
areas,63 64 66–69 but cerebral pathology is not solely restricted to 
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Figure 1  DTI in ALS. DTI is a non-invasive, in vivo application of MRI that 
is sensitive to a reduction in unidirectional water movement associated 
with the loss of large white matter tract integrity arising through a variety 
of brain pathologies. In ALS, there is a consistent reduction in a quantifiable 
metric known as fractional anisotropy, which is most consistently spatially 
localised to the caudal corticospinal tract and interhemispheric motor fibres 
of the corpus callosum (marked on the images here in yellow and orange 
over the background DTI white matter tract skeleton, shown in green). ALS, 
amyotrophic lateral sclerosis; DTI, diffusion tensor imaging.

the primary motor cortex.7 64 In ALS-FTLD syndromes, there is 
marked frontal atrophy; with neuronal loss in layers 2, 3 and 5, 
‘status spongiosus’, astrogliosis and microglial proliferations as 
coindicators of widespread pathology. At autopsy, abnormalities 
in ALS are widespread in central motor pathways. loss of pyra-
midal neurons in layers 4 and 5 of the primary motor cortex and 
of cortical peptidergic and GABAergic (gamma-amino-butyric 
acid) interneurons70 71 is controversial,72 but loss of pyramidal 
cells and interneurons extends to cortical areas 4, 9 and 24. 
Loss of cortical pyramidal neurons and interneurons in distant, 
indirectly connected cortical areas is consistent with the notion 
that ALS and FTLD are related anterior brain degenerations. 
Selective susceptibility of long axons, as a concept,73 has been 
superseded by the notion of vulnerability of functionally related 
neuronal and glial networks associated with TDP43 deposits in 
remaining neurons. It is difficult to correlate clinical phenotypes 
with motor or frontal cortical or CST pathology in ALS.63–66 
Indeed, in progressive muscular atrophy (PMA), despite little 
or no clinical evidence of UMN involvement, there is almost 
universal pathological evidence of CST degeneration,74 75 
perhaps clinically undetectable due to the extent of LMN loss 
and muscle atrophy.

Overall, therefore, the pathological evidence points towards 
a process of axonal degeneration. Occasionally, MRI reveals a 
striking signal change in the cerebral CSTs,76 but whether or not 
this represents Wallerian degeneration, a progressive antero-
grade degeneration of axons in reaction to injury, is unclear.77 782 
However, blocking the molecular pathways that contribute to 
Wallerian degeneration does not modulate neurodegeneration in 
mouse ALS models.79 Neuronal cell bodies and axons in CNS 
motor pathways seem to be involved together.

Intracellular inclusions containing ubiquitin, p62 and 
abnormal TDP-43 are far less marked in cortical motor neurons 
than in somatic motor neurons of the brainstem and spinal 
cord, or in neurons in layers 2, 3 and 5 in the prefrontal and 
temporal regions in FTLD and ALS-FTLD. Altered TDP-43 
probably drives degeneration in the CST. Abnormalities in 
Betz cells and pyramidal cells of the primary motor cortex in 
sporadic and familial ALS, and in ALS-FTLD, include fragmen-
tation, vacuolation, atrophy of apical dendrites, loss of spines, 
apical dendrite retraction and loss of postsynaptic densities.80–83 
Studies in animal models suggest that dendritic pathology is 
an early, indeed presymptomatic feature of ALS84–86 and that 
TDP-43 cytoplasmic mislocalisation is associated with a reduc-
tion in dendritic spine density.862 How far these observations 
mirror the evolution of pathology in human ALS is uncertain.87 
In summary, there is incomplete understanding of the dynamics 
of UMN degeneration in ALS.65 Genetic heterogeneity and the 
wide variation in the distribution and burden of UMN pathology 
across the ALS and ALS-FTLD syndromes suggest marked vari-
ability in the underlying dynamic processes, even in clinically 
similar ALS syndromes.88

Structural biochemistry of the UMN in ALS
Neurofilaments (NFs) are components of the neuronal cyto-
skeleton, classified by molecular weight into light chain, heavy 
chain and intermediate chain. Raised cerebrospinal fluid (CSF) 
and blood levels have been demonstrated in many CNS diseases, 
correlated with the clinical intensity and presumably reflecting 
the rate of neuronal and axonal loss.89 In the earliest reports 
of raised CSF NF levels seen in ALS, it was noted that levels 
were highest in those with UMN signs.90 91 This was replicated 
in larger patient series, in which a strong relationship to rate of 

increasing disability was confirmed.92 The assumption that high 
CSF levels in ALS reflect CST damage was tested using paired 
diffusion tensor imaging (DTI) measures, but the results showed 
limited5 or no apparent association.93 Additional CSF and blood-
based studies have reported only a weak distinction between NF 
levels and clinical UMN versus LMN involvement in ALS.94 95

Imaging in ALS: widespread UMN abnormalities
Macroscopic postmortem cerebral atrophy is strikingly limited 
in ALS. Localised, ‘knife-edge’, atrophic, precentral gyri are 
seen in slowly progressive cases, especially in primary lateral 
sclerosis (PLS), a syndrome in which degeneration is clinically 
limited to the UMN.96 Automated volumetric MRI studies in 
ALS may detect diffuse frontal cerebral atrophy, especially asso-
ciated with cognitive impairment,97–99 but there is currently only 
limited evidence supporting somatotopic motor cortical atrophy 
in relation to regional motor disability.99 100 In some patients, 
there is hyperintensity in the CSTs in T2-weighted MRI,101 
but with weak clinical correlation.102 However, T2-based MRI 
signal analysis, using DTI, has confirmed consistent loss of 
CST integrity more consistently related to classic clinical UMN 
involvement.103 Linkage of primary motor cortical atrophy and 
clinical UMN signs is strengthened by magnetic resonance (MR) 
spectroscopy, using reduced N-acetylaspartate levels as a surro-
gate marker for neuronal loss, both in region-of-interest104 and 
whole-brain studies.105 Interhemispheric motor cortical fibres in 
the central corpus callosum (figure 1) are consistently involved 
in ALS,106–108 especially in PLS.109 110 DTI changes correlate with 
clinical and transcortical magnetic stimulation studies of UMN 
involvement,107 109 111 and Wallerian degeneration with microg-
lial infiltration has been suggested as a correlate of these white 
matter tract MRI changes.112 113

White matter tract damage in ALS (figure 1) is invariably bilat-
eral in DTI studies and extends far beyond the pyramidal tracts 
and the corpus callosum, even in patients studied soon after 
the onset of focally restricted symptoms.114 Structural studies 
focused beyond the cortical grey matter in ALS have shown 
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associated changes in basal ganglia,99 particularly in the thalami, 
points of integration with widespread frontotemporal cortical 
involvement in the course of the disease.115 MRI has confirmed 
the neuropathological finding that in PMA there is typically also 
subclinical degeneration of the pyramidal pathway.74 75

Neuroimaging markers and disability in ALS are poorly 
correlated, reflecting dependence of the ALS Functional Rating 
Scale on LMN loss.116 Functional brain imaging with posi-
tron emission tomography (PET), using radiotracers sensitive 
to glucose metabolism and blood flow, has also demonstrated 
brain changes beyond primary motor regions.117 118 Blood flow 
PET during performance of a focused upper-limb task revealed 
cortical activation extending to facial areas of the motor 
cortex, implying an alteration in local circuit neurophysiology, 
whether compensatory or a primary pathological process.119 
Subsequent ligand PET studies using flumazenil as a marker of 
GABAergic inhibitory receptors showed loss of binding in motor 
and premotor regions in ALS, but with relative preservation in 
familial slowly progressive ALS.120 Combined DTI and func-
tional MRI studies provide limited support for a more direct role 
of inhibitory interneuron loss in the pathogenesis of ALS, rather 
than a solely compensatory process,121 and MR spectroscopy has 
provided limited evidence for reduced GABA-ergic (GABA-A) 
influence within the primary motor cortex.122

Functional MRI based on regional patterns of synchronously 
fluctuating blood oxygenation level-dependent signal in the 
task-free, so-called resting state has revealed a network-based 
dysfunction underlying neurodegenerative disorders more 
broadly,123 but also to ALS.124 Resting-state network abnormali-
ties, in the form of increased functional connectivity, are detect-
able in asymptomatic carriers of penetrant ALS-causing genetic 
variants.125 Further, the unique temporal sensitivity of magne-
toencephalography in demonstrating differences in beta-band 
cortical oscillations associated with the preparation, execution 
and recovery from motor activity126 promises to be potentially 
powerful for studies of corticomuscular coherence in analysing 
broader motor system ‘connectome’ dysfunction in ALS.127

Neurophysiological studies of the UMN in ALS
Early studies used transcranial electrical stimulation of the 
motor cortex.128 This induced depolarisation of large pyra-
midal neurons and showed absent or delayed cortical responses, 
confirming that the fast-conducting UMN tract was damaged 
in this disorder.129–131 The central conduction time was found 
to be more frequently delayed in patients with UMN signs,129 
and this test was more sensitive than clinical assessment in the 
identification of UMN dysfunction.129–131 Transcranial magnetic 
stimulation132 (TMS), which superseded electrical brain stimula-
tion, induces an intracortical current causing a transmembrane 
ionic flow that induces preferential trans-synaptic excitation of 
pyramidal cells.133 Motor cortical dysfunction, related to clin-
ical findings, is detectable in ~70% of patients with ALS,134 
and in ~30% of those with pure LMN presentations.134 135 In 
addition, in early ALS the cortical motor threshold is reduced in 
strong muscles, in particular in those with fasciculations.134–138 
Short-interval intracortical inhibition (1–4 ms), measured using 
a paired stimulus technique, is mediated by GABA-A interneu-
ronal circuits and is reduced in ALS.139 140 An automated cortical 
threshold tracking technique, recording decreased motor ampli-
tude in the target muscle,141 has shown that this is a consistent 
early marker of ALS and that it precedes clinical onset in super-
oxide dysmutase (SOD1) familial ALS. Furthermore, this abnor-
mality is partially normalised by riluzole.142 Peristimulus time 

histogram studies in early affected patients showed increased 
magnitude of excitatory postsynaptic potentials (EPSPs).143 
Fasciculations, a typical marker of LMN dysfunction in ALS, can 
sometimes be evoked by TMS,144 probably representing LMN 
hyperexcitability.

Spasticity, a feature of the classical UMN syndrome, is a 
sign of alpha-corticomotoneuronal hyperexcitability.39 This 
membrane change is associated with stable membrane poten-
tials (plateau potentials) that resist changes in response to 
peripheral inputs,145 shown by analysing the variability of the 
LMN firing rate in ALS and PLS.146 The cortical silent period, 
mainly representing cortical inhibition,147 is a period of EMG 
silence during muscle contraction following a motor response 
evoked by TMS. It tends to be shorter in ALS, especially early 
in disease progression.148 The H-reflex, mirroring the monosyn-
aptic tendon reflex, is abnormally consistent with clinical signs 
of UMN involvement, especially in analyses of the slope angle 
of its earliest rising phase.149 These changes are consistent with 
coupled UMN–LMN hyperexcitability. However, adapted inter-
neuronal responses in the spinal cord resulting from reduced 
corticospinal input, leading to increased compensatory alpha-
motoneuron hyperexcitability, are also a possible mechanism.150 
Hyperexcitability may be an early feature of neuronal degener-
ation but, also, a transitory adaptive process to compensate for 
neuronal loss, although the latter seems less likely.127 151 Current 
neurophysiological methods do not address function in most of 
the ancillary UMN pathways, as reviewed previously, that have a 
critical role in the disease process. In addition, the role of spinal 
cord UMN pathways, an integral component of the CNS, is not 
well defined.

Conclusions
ALS is a disorder characterised by anterior brain neurodegen-
eration that seems to result from interactions between genetic 
and potential environmental risk factors, with striking clinical 
variability.88 Recognition of the UMN abnormality in ALS has 
always been difficult despite its importance for robust diag-
nosis.1 3 4 This reflects diagnostic emphasis on the classical clin-
ical signs of internal capsular lesions as the epitome of the UMN 
syndrome. However, in ALS, frontal brain degeneration is wide-
spread, with complex secondary efferent and commissural tract 
degenerations diffusely involving the brain motor network and 
its related connections. Involvement of other brain structures, 
including thalamic123 and cerebellar changes,152 the anterior 
horns in the spinal cord2 and frontal cognitive abnormalities, 
is consistent with this concept of anterior brain degeneration. 
In ALS and ALS-FTLD, classical UMN features, as seen in focal 
brain lesions, are overwhelmed by anterior horn cell and inter-
neuronal degeneration in the spinal cord2 and by higher-order 
functional motor deficits. The latter have been underestimated 
by ALS clinicians. Expansion of the concept of the UMN deficit 
in the ALS syndrome, including structural and functional brain 
imaging and neurophysiological assessment of cortical and deep 
white matter motor systems, will facilitate understanding of the 
functional deficits. Given the pathophysiological complexity 
of the UMN syndrome, it is not surprising that the full clinical 
syndrome is often not present in ALS, underlying the need for 
surrogate markers of UMN dysfunction. A wider concept of the 
UMN syndrome in ALS must be developed.
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