The Journal of Neurology, Neurosurgery and Psychiatry centenary milestone award 2020

Matthew C Kiernan1,2

Brain imaging—The development and application of imaging techniques.

Parkinson's disease—The efficacy of L-Dopa therapy.

Multiple sclerosis—The evolution of new therapy.

Neurosurgery—The advent of deep brain stimulation.

Neurogenetics—The discovery of causal genes.

Stroke—The introduction of thrombolysis and endovascular recanalisation therapy.

Neurotransmission—The discovery of ion channels and the electrical properties of axons.

Neuropsychiatry—The introduction of therapies.

Neurosurgery—The introduction of the microscope and microsurgical techniques.

Autoimmune disease—Unlocking disease pathophysiology; introduction of novel therapies.

Regardless of your field of expertise, we are now asking our readers to weigh the merits of each nomination and choose their number one.

With voting closing in late July, the editors will convene centenary celebrations at BMA House, London, in September, at which time presentations of the shortlisted topics will take place. It is here that the JNNP Editorial Board will cast a final vote and announce the winner.

So, please vote now at (http://bit.ly/2UnexPF) to nominate what you consider the greatest breakthrough in clinical neuroscience since 1920 and join us to celebrate JNNP's role in a remarkable century of neuroscientific achievement.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Commissioned; internally peer reviewed.

© Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.

To cite Kiernan MC. J Neurol Neurosurg Psychiatry 2020;91:677.

Received 6 February 2020
Accepted 6 February 2020

JNNP 2020—a centenary of publishing neuroscience achievement

Late last year, the Journal of Neurology, Neurosurgery and Psychiatry (JNNP) polled readers, asking them to nominate the single most important or transformative development in neurology, neurosurgery or psychiatry in the past 100 years. The response was overwhelming!

Would the early foundational work in brain imaging or drug therapies1–4 take centre stage? Did the phenomenal advancements in genetic research4–5 or the discovery of new biological pathways8 make the grade? Perhaps the discovery of ion channels, the role of neuroinflammation and the advent of autoimmune disease6–11? Or was the ground-breaking work in stroke or mental health12–15 going to steal the show? We left the answer entirely to our readers—the colleagues and collaborators, researchers and clinicians who contribute to and benefit from these breakthroughs in their everyday work.

During the most recent end-of-year meeting hosted by JNNP editors and its publisher BMJ, the most worthy of those trail-blazing nominations were shortlisted. The finalists are as follows, in no specific order:

1–4: Brain imaging
5–7: Parkinson’s disease
8–10: Multiple sclerosis
11–15: Neurosurgery
12–15: Neurogenetics
13–15: Stroke
14–15: Neurotransmission
15: Neuropsychiatry
16–15: Autoimmune disease
17–15: Stroke
18–15: Neurosurgery
19–15: Autoimmune disease
20–15: Parkinson’s disease
21–15: Multiple sclerosis
22–15: Neurosurgery
23–15: Neurogenetics
24–15: Stroke
25–15: Neurotransmission
26–15: Neuropsychiatry
27–15: Autoimmune disease
28–15: Stroke
29–15: Neurosurgery
30–15: Autoimmune disease
31–15: Parkinson’s disease
32–15: Multiple sclerosis
33–15: Neurosurgery
34–15: Neurogenetics
35–15: Stroke
36–15: Neurotransmission
37–15: Neuropsychiatry
38–15: Autoimmune disease
39–15: Stroke
40–15: Neurosurgery
41–15: Autoimmune disease
42–15: Parkinson’s disease
43–15: Multiple sclerosis
44–15: Neurosurgery
45–15: Neurogenetics
46–15: Stroke
47–15: Neurotransmission
48–15: Neuropsychiatry
49–15: Autoimmune disease
50–15: Stroke
51–15: Neurosurgery
52–15: Autoimmune disease
53–15: Parkinson’s disease
54–15: Multiple sclerosis
55–15: Neurosurgery
56–15: Neurogenetics
57–15: Stroke
58–15: Neurotransmission
59–15: Neuropsychiatry
60–15: Autoimmune disease
61–15: Stroke
62–15: Neurosurgery
63–15: Autoimmune disease
64–15: Parkinson’s disease
65–15: Multiple sclerosis
66–15: Neurosurgery
67–15: Neurogenetics
68–15: Stroke
69–15: Neurotransmission
70–15: Neuropsychiatry
71–15: Autoimmune disease
72–15: Stroke
73–15: Neurosurgery
74–15: Autoimmune disease
75–15: Parkinson’s disease
76–15: Multiple sclerosis
77–15: Neurosurgery
78–15: Neurogenetics
79–15: Stroke
80–15: Neurotransmission
81–15: Neuropsychiatry
82–15: Autoimmune disease
83–15: Stroke
84–15: Neurosurgery
85–15: Autoimmune disease
86–15: Parkinson’s disease
87–15: Multiple sclerosis
88–15: Neurosurgery
89–15: Neurogenetics
90–15: Stroke
91–15: Neurotransmission
92–15: Neuropsychiatry
93–15: Autoimmune disease
94–15: Stroke
95–15: Neurosurgery
96–15: Autoimmune disease
97–15: Parkinson’s disease
98–15: Multiple sclerosis
99–15: Neurosurgery
100–15: Neurogenetics

1 Bushell Chair of Neurology, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
2 Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
3 Correspondence to Professor Matthew C Kiernan, Bushell Chair of Neurology, Brain and Mind Centre, University of Sydney, Sydney, NSW 2006, Australia; matthew.kiernan@sydney.edu.au

REFERENCES