Short report

Systematic evaluation of genetic mutations in ALS: a population-based study

Maurizio Grassano, Andrea Calvo, Cristina Moglia, Luca Sbaiz, Maura Brunetti, Marco Barberis, Federico Casale, Umberto Manera, Rosario Vasta, Antonio Canosa, Sandra D’Alfonso, Lucia Corrado, Letizia Mazzini, Clifton Dalgard, Ramita Karra, Ruth Chia, Bryan Traynor, Adriano Chio

ABSTRACT

Background A genetic diagnosis in Amyotrophic Lateral Sclerosis (ALS) can inform genetic counselling, prognosis and, in the light of incoming gene-targeted therapy, management. However, conventional genetic testing strategies are often costly and time-consuming.

Objective To evaluate the diagnostic yield and advantages of whole-genome sequencing (WGS) as a standard diagnostic genetic test for ALS.

Methods In this population-based cohort study, 1043 ALS patients from the Piemonte and Valle d’Aosta Register for ALS and 755 healthy individuals were screened by WGS for variants in 42 ALS-related genes and for repeated-expansions in C9orf72 and ATXN2.

Results A total of 279 ALS cases (26.9%) received a genetic diagnosis, namely 75.2% of patients with a family history of ALS and 21.5% of sporadic cases. The mutation rate among early-onset ALS patients was 43.9%, compared with 19.7% of late-onset patients. An additional 14.6% of the cohort carried a genetic factor that worsened prognosis.

Conclusions Our results suggest that, because of its high diagnostic yield and increasingly competitive costs, along with the possibility of retrospectively reassessing newly described genes, WGS should be considered as standard genetic testing for all ALS patients. Additionally, our results provide a detailed picture of the genetic basis of ALS in the general population.

INTRODUCTION

Considerable progress has been made in unravelling the complex molecular mechanisms underlying Amyotrophic Lateral Sclerosis (ALS). Nevertheless, it is not easy to gauge the impact of these genetic advances across the ALS space. Estimates of mutation carrier rate among ALS patients seen in specialist centres may be skewed due to referral bias. This knowledge gap hinders efforts to develop therapies and to counsel patients effectively. For this reason, we systematically analysed a population-based cohort of ALS patients using whole-genome sequencing. Our comprehensive approach provides a snapshot of what we currently know about the genetic architecture of ALS. In the process, the current study builds on our previous work, where we showed that whole-genome sequencing is a reliable tool to assess gene burden effects.

METHODS

Patients and controls cohort

We analysed ALS patients who had been enrolled in Piemonte and Valle d’Aosta Register for ALS (PARALS). All samples have been previously analysed for mutations in the SOD1, TARDBP, FUS and C9orf72 genes (online supplemental eMaterials).

Methods for identifying new genes

An additional 755 healthy individuals underwent whole-genome sequencing and were used as control data for mutation filtering.

Sequencing and bioinformatics analysis

Whole-genome sequencing methodology and quality control filters have been described elsewhere and are described in eMaterials. We extracted variant information for 46 genes previously implicated in ALS pathogenesis (online supplemental eFigure 1). We estimated the repeat lengths of the C9orf72 and ATXN2 repeat expansions using ExpansionHunter—Targeted (V.0.3). For variants classification, we employed a framework based on the 2015 ACMG-AMP (American College of Medical Genetics and Genomics - Association for Molecular Pathology) guidelines.

Loss-of-function and previously reported ALS variants were considered pathogenic unless present in the control cohort. The remaining rare variants (defined as minor allele frequency less than 0.0001 in the non-Finnish European population) were then classified based on computational prediction and expert review (online supplemental eMaterials) and reported if deemed to be potentially pathogenic (online supplemental eFigure 1).

Statistical analysis

A two-tailed Fisher’s exact test was used to evaluate the genetic association between ATXN2 CAG-repeat sizes and ALS. The burden of multiple variant carriers was assessed by a binomial test. The analyses were performed in R (V.3.6.0).

RESULTS

We analysed a population-based cohort of 1043 patients who had been diagnosed with ALS and enrolled in PARALS. The 1043 patients represented...
Neurogenetics

71.3% of incident cases during the 2007–2016 period. We found 96 mutations known to cause ALS among 203 cases, representing 19.5% of our cohort. An additional 76 patients (7.4%) carried potentially pathogenic variants based on our classification pipeline, bringing the total number of ALS cases with disease-causing variants to approximately a quarter of ALS cases (26.9%, n=279, figure 1A and online supplemental eTable 1). The distribution of variants across ALS genes is reported in figure 1B. The most common mutation type was C9orf72 (present in 7.7% of ALS cases), followed by SOD1 (2.0%), NEK1 (1.8%), TARDBP (1.4%) and KIF5A (0.8%). All mutations were detected by both traditional Sanger sequencing and whole-genome sequencing screening, confirming the ability of whole-genome sequencing to identify relevant mutations correctly.

Diagnostic yield in familial and early-onset ALS cases

Subdividing our cohort, we detected disease-causing mutations in 88 (75.2%) familial ALS cases. We also observed a high mutation rate among early-onset ALS patients (age at onset <50 years, n=43, 43.9%) compared with late-onset patients (age at onset >75 years, n=41, 19.7%). Nearly half of the mutations observed in the elderly cohort were due to the C9orf72 repeat expansion, illustrating the reduced penetrance observed with this mutation.10 Furthermore, 21.5% of apparently sporadic ALS patients carried a disease-causing variant (figure 1A).

Risk factor and prognostic variants

Intermediate-length ATXN2 CAG expansion (30–33 repeats) was the only high-risk genetic factor (defined as OR ≥2.0) identified in our cohort (OR 2.84, 95% CI 1.45 to 5.57, p=0.0023). The ATXN2 expansions were present in 41 (3.9%) patients. The prognostic UNC13A rs12608932 CC genotype was observed in 10.7% (n=112) of our ALS cases.

Oligogenic cases

Our cohort’s rate of oligogenic ALS cases was 1.3% (n=13) (online supplemental eTable 2A). However, the proportion of oligogenic patients was not higher than expected (binomial p=0.98) based on the frequency of monogenic (25.6%) and non-mutated cases (73.1%) (online supplemental eTable 2B).

DISCUSSION

We detected a high rate of patients carrying pathogenic mutations (26.9%) in our population-based ALS cohort. This
represents the largest percentage explained by genetic causes for any cohort reported to date.2,11,12 As we sequenced an ALS cohort from a population-based registry, our data also represent a detailed audit of what is currently known about the genetic architecture of this fatal neurodegenerative condition in the general population. Our findings reflect both our increasing knowledge of the genetic architecture of ALS and the power of whole-genome sequencing to identify these variants. For example, the C9orf72 repeat expansion accounted for nearly one-third of all cases where the mutation was known.

Our results support the use of whole-genome sequencing in ALS patients at the time of their diagnosis, irrespective of family history, age at onset or clinical phenotype.13 Whole-genome sequencing is a flexible tool that does not rely on a predetermined set of genes and a variant prioritisation process but can be adapted to different types of mutations as the collection of ALS-related genes evolves. The continuous improvement in variant calling and interpretation, along with our improving understanding of ALS genetics, will facilitate those endeavours. Ideally, periodic reevaluations of the whole-genome sequence data will become a feed-forward loop that enhances our knowledge with each iteration.

Our data do not support the oligogenicity theory of ALS, as it occurs very infrequently within the Italian population. The future discovery of more genes involved in ALS pathogenesis may reveal true oligogenicity. However, the existing data do not currently uphold a role for this disease mechanism.

Our primary reason for championing whole-genome sequencing as a routine test lies in the therapeutic implications for ALS patients. For example, we detected ATXN2 intermediate trinucleotide expansion in 41 ALS subjects (3.9\%) and confirmed that it increased ALS risk. This result is clinically relevant since antisense oligonucleotide therapy targeting ATXN2 is in human trials at present.14 Considering ATXN2, C9orf72, SOD1 and FUS, all genes currently under study for the treatment with Antisense oligonucleotides (ASOs),15 at least 144 patients (13.8\% of the cohort) could be candidates for gene-based therapy (figure 1A). Whole-genome sequencing allows those variants to be screened in a low-cost, rapid manner compared with traditional methodologies.

Our study is not without limitations. Above all, the lack of definite criteria for variant interpretation increases the risk of misclassifying ALS patients as wild-type or mutated. While our internal framework was reasonably robust, we do not maintain that it is definitive. Over time, the availability of updated mutation databases based on ever-larger cohort sizes and improved interpretation algorithms will enhance the analysis of these variants. Ambitious research programmes are collecting whole-genome sequencing data from millions of human genomes to pair with phenotypical and long-term clinical data.

To summarise, our population-based evaluation sheds light on the complex genetics of ALS and provides a valuable benchmark of where the field currently stands. We show that whole-genome sequencing increases diagnostic yield and facilitates the assessment of the pathogenic role of involved genes. This information will be crucial for clinical care as precision therapeutics emerge as effective treatments. In anticipation of that, we consider whole-genome sequencing as the first-tier genetic test on all ALS patients.
Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs
Maurizio Grassano http://orcid.org/0000-0001-6714-6897
Andrea Calvo http://orcid.org/0000-0002-5122-7243
Federico Casale http://orcid.org/0000-0002-1097-1279
Umberto Manera http://orcid.org/0000-0002-9995-8133
Antonio Canosa http://orcid.org/0000-0001-5876-4079

REFERENCES
EMaterials

Patients and controls characteristic

Patients were included in PARALS if they met definite, probable, or probable laboratory-supported ALS diagnosis according to the revised El Escorial criteria. Control samples were composed of 350 females and 405 males. The 755 controls were chosen randomly from the same population and matched to the cases by sex, age (±5 years), and geographic location. Control subjects were excluded from the study if they had a first-degree relative with a neurological or psychiatric disorder.

Standard protocol approvals and patient consents

All subjects participating in the study gave written informed consent. Ethical approval was obtained from the medical ethical review board of the A.O.U Citta della Salute e della Scienza di Torino, Italy.

Whole-genome sequencing

Whole-genome sequencing was performed at The American Genome Center at the Uniformed Services University on the Walter Reed National Military Medical Center campus in Bethesda, MD, USA. Briefly, libraries were prepared using TruSeq DNA PCR-Free High Throughput Library Prep Kit (Illumina Inc.) as per the manufacturer's instructions. Sequencing was performed on an Illumina HiSeq X10 sequencer using paired-end 150 base pair reads, and the data were processed according to Genome Analysis Toolkit's (GATK) best practices (https://software.broadinstitute.org/gatk/best-practices/). Variant quality control was performed using the GATK variant quality score method with default filters using Genome Reference Consortium Human Build 38 as the reference.

ALS-related genes

We extracted variant information from the data for the following genes: ALS2, ANXA11, ATXN2, C21orf2, C9orf72, CCNF, CHCHD10, CHMP2B, DAO, DCTN1, DNAJC7, ERBB4, EWSR1, FIG4, FUS, GLE1, GRN, HRNPA1, HRNPA2B1, HNRNPD, KIF5A, MAPT, MATR3, NEFH, NEK1, OPTN, PFN1, PRNP, PRPH, SETX,
SIGMAR1, SOD1, SPG11, SPTLC1, SQSTM1, SS18LI, TAF15, TARDBP, TBK1, TUBA4A, UBQLN2, VAPB, and VCP. Prognostic genes (UNC13A, CAMTA1) were also extracted.

Variant annotation

Annotation was then performed using ANNOVAR v2020-06-07 (https://annovar.openbioinformatics.org) and KGGseq v1.0 (http://pmglab.top/kggseq/) using the gnomAD database (version 2.1.1) to determine minor allele frequency (MAF) in the European-derived population. The current study was focused on coding variants due to the limitations in interpreting non-coding variants.

Expansion screening

The samples were screened for C9orf72 expansions and the microsatellite repeat in ATXN2 using repeat-primed PCR methodology as previously described.\(^2\)\(^3\) A cut-off of 30 repeated expansion and the characteristic sawtooth pattern was considered pathogenic for C9orf72\(^2\). ATXN2 CAG expansions were deemed intermediate if they were within the range of 30-33 repeats\(^3\). ExpansionHunter - Targeted software (version 0.3) was used to estimate repeat lengths of known, disease-causing expansions in samples undergoing whole-genome sequencing. This algorithm has been validated using experimentally confirmed samples carrying expansions\(^4\). The performance of whole-genome sequencing in terms of sensitivity for repeated expansion has been validated in the same ALS cohort\(^5\)\(^6\).

Variant interpretation

We set a conservative MAF frequency threshold of <0.01% based on the epidemiology of ALS. We defined Loss of Function (LoF) variants when the sequence changes were predicted to be a premature stop codon, a frameshift causing insertion/deletion (indel), or a splice-site disrupting variant located in the canonical splice sites (+1 and +2, −1 and −2) that cause the premature termination codon falling < 50–55 nucleotides upstream of the 3′ most exon–exon junctions. Loss of function variants was considered deleterious unless they exceeded the 0.01% MAF threshold. For all other type of variants, the combination of different sets of algorithms was
considered using recommended thresholds [MutationTaster, Mendelian Clinically Applicable Pathogenicity (MCAP), CADD, Variant Effect Scoring Tool (VEST3), Rare Exome Variant Ensemble Learner (REVEL), Meta-analytic Support Vector Machine (Meta-SVM)]\(^7\). These variants underwent an independent review by clinical and genetic ALS experts and were confirmed to be clinically reportable if agreed by consensus. When available, gene-specific information data was used in the classification.

Statistical Analysis

A 2-tailed Fisher exact test was used to evaluate the genetic association between ATXN2 CAG repeat sizes and ALS (significance set at P < 0.05). The burden of multiple variant carriers was assessed by a binomial test\(^8\). Age at disease onset and disease progression were also assessed across oligogenic and monogenic with analysis of variance (ANOVA). The analyses were performed in R (version 3.6.0).

Data availability statement

The individual-level sequence data are available on dbGaP (accession number: phs001963.v1.p1) upon motivated request by interested researchers.
eFigure 1. Study Flowchart. Simplified flowchart describing the steps taken to filter and prioritize variants in ALS genes. MAF, minor allele frequency; NFE, non-Finnish Europeans; ACMG, American College of Medical Genetic.
eFigure 2. Summary of identified variants.
eTable 1 – Variants detected in our cohort previously reported in ALS cases.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Transcript</th>
<th>Nucleotide change</th>
<th>Amino acid change</th>
<th>Exon</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS2</td>
<td>NM_020919</td>
<td>c.4867C>T</td>
<td>p.L1623F</td>
<td>exon33</td>
<td>missense</td>
</tr>
<tr>
<td>ALS2</td>
<td>NM_020919</td>
<td>c.3836+1G>A</td>
<td></td>
<td>exon24</td>
<td>splicing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GT donor</td>
</tr>
<tr>
<td>ALS2</td>
<td>NM_020919</td>
<td>c.3797C>G</td>
<td>p.P1266R</td>
<td>exon24</td>
<td>missense</td>
</tr>
<tr>
<td>ALS2</td>
<td>NM_020919</td>
<td>c.3462G>T</td>
<td>p.Q1154H</td>
<td>exon21</td>
<td>missense</td>
</tr>
<tr>
<td>ALS2</td>
<td>NM_020919</td>
<td>c.3394C>A</td>
<td>p.R1132S</td>
<td>exon21</td>
<td>missense</td>
</tr>
<tr>
<td>ALS2</td>
<td>NM_020919</td>
<td>c.3206G>A</td>
<td>p.G1069E</td>
<td>exon19</td>
<td>missense</td>
</tr>
<tr>
<td>ALS2</td>
<td>NM_020919</td>
<td>c.2979+1G>A</td>
<td></td>
<td>exon17</td>
<td>splicing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GT donor</td>
</tr>
<tr>
<td>ALS2</td>
<td>NM_020919</td>
<td>c.2479A>T</td>
<td>p.T827S</td>
<td>exon13</td>
<td>missense</td>
</tr>
<tr>
<td>ALS2</td>
<td>NM_020919</td>
<td>c.1804C>T</td>
<td>p.R602C</td>
<td>exon8</td>
<td>missense</td>
</tr>
<tr>
<td>ALS2</td>
<td>NM_020919</td>
<td>c.1649C>T</td>
<td>p.P550L</td>
<td>exon7</td>
<td>missense</td>
</tr>
<tr>
<td>ALS2</td>
<td>NM_020919</td>
<td>c.1628A>G</td>
<td>p.D543G</td>
<td>exon6</td>
<td>missense</td>
</tr>
<tr>
<td>ALS2</td>
<td>NM_020919</td>
<td>c.1550C>G</td>
<td>p.A517G</td>
<td>exon6</td>
<td>missense</td>
</tr>
<tr>
<td>ALS2</td>
<td>NM_020919</td>
<td>c.1472-1G>C</td>
<td></td>
<td>exon6</td>
<td>splicing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>acceptor</td>
</tr>
<tr>
<td>ALS2</td>
<td>NM_020919</td>
<td>c.37G>A</td>
<td>p.G13R</td>
<td>exon3</td>
<td>missense</td>
</tr>
</tbody>
</table>
ANXA11 NM_001157 c.922C>T p.R308X exon8 stopgain
ANXA11 NM_001157 c.102G>A p.M34I exon3 startloss
ANXA11 NM_001157 c.744+2C>T . exon7 splicing
C21orf2 NM_001271441 c.418_420del p.G140del exon5 non-frameshift deletion
C21orf2 NM_001271441 c.701_702insGCC p.V235Pfs*38 exon6 frameshift insertion
CCNF NM_001761 c.139C>T p.L47F exon2 missense
CCNF NM_001761 c.316C>G p.L106V exon4 missense
CCNF NM_001761 c.1043C>T p.P348L exon9 missense
CCNF NM_001761 c.1132G>A p.V378I exon11 missense
CHCHD1 NM_213720 c.239C>T p.P80L exon2 missense
0
CHMP2B NM_014043 c.74A>G p.Q25R exon2 missense
CHMP2B NM_014043 c.85A>G p.I29V exon2 missense
DAO NM_001917 c.34G>A p.G12R exon2 missense
DAO NM_001917 c.992G>A p.G331E exon11 missense
DCTN1 NM_001190836 c.3575C>T p.A1192V exon28 missense
DCTN1 NM_001190836 c.3574G>A p.A1192T exon28 missense
DCTN1 NM_001190836 c.2588T>C p.M863T exon20 missense
DCTN1 NM_001190836 c.2522A>G p.Y841C exon20 missense
DCTN1 NM_001190836 c.2321C>G p.P774R exon18 missense
DCTN1 NM_001190836 c.2147C>T p.T716M exon17 missense
DCTN1 NM_001190836 c.1484G>C p.R495P exon12 missense
DCTN1 NM_001190836 c.964C>T p.Q322* exon8 stopgain
DCTN1 NM_001190836 c.884T>C p.V295A exon7 missense
DNAJC7 NM_003315 c.611G>A p.R204Q exon7 missense
DNAJC7 NM_003315 c.203G>A p.R68Q exon3 missense
EPHA4 NM_001304537 c.2060C>G p.S687C exon12 missense
EPHA4 NM_001304537 c.1702T>C p.S568P exon9 missense
EPHA4 NM_001304537 c.1058T>C p.L353P exon4 missense
ERBB4 NM_005235 c.3446G>T p.G1149V exon27 missense
ERBB4 NM_005235 c.2525G>A p.R842Q exon21 missense
ERBB4 NM_005235 c.1913G>A p.W638* exon16 stopgain
ERBB4 NM_005235 c.1912T>C p.W638R exon16 missense
ERBB4 NM_005235 c.1898G>C p.C633S exon16 missense
ERBB4 NM_005235 c.1772A>G p.E591G exon15 missense
<table>
<thead>
<tr>
<th>Gene</th>
<th>RefSeq</th>
<th>Mutation</th>
<th>Protein Change</th>
<th>Exon</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERBB4</td>
<td>NM_005235</td>
<td>c.586C>T</td>
<td>p.R196C</td>
<td>exon5</td>
<td>missense</td>
</tr>
<tr>
<td>ERBB4</td>
<td>NM_005235</td>
<td>c.532G>C</td>
<td>p.V178L</td>
<td>exon4</td>
<td>missense</td>
</tr>
<tr>
<td>ERBB4</td>
<td>NM_005235</td>
<td>c.308G>A</td>
<td>p.R103H</td>
<td>exon3</td>
<td>missense</td>
</tr>
<tr>
<td>EWSR1</td>
<td>NM_001163285</td>
<td>c.1447A>G</td>
<td>p.M483V</td>
<td>exon14</td>
<td>missense</td>
</tr>
<tr>
<td>EWSR1</td>
<td>NM_001163285</td>
<td>c.1775_1776insT</td>
<td>p.Q593F*20</td>
<td>exon17</td>
<td>frameshift</td>
</tr>
<tr>
<td>FIG4</td>
<td>NM_014845</td>
<td>c.30C>G</td>
<td>p.S10R</td>
<td>exon1</td>
<td>missense</td>
</tr>
<tr>
<td>FIG4</td>
<td>NM_014845</td>
<td>c.52T>C</td>
<td>p.Y18H</td>
<td>exon1</td>
<td>missense</td>
</tr>
<tr>
<td>FIG4</td>
<td>NM_014845</td>
<td>c.2200G>A</td>
<td>p.E734K</td>
<td>exon20</td>
<td>missense</td>
</tr>
<tr>
<td>FIG4</td>
<td>NM_014845</td>
<td>c.2467C>T</td>
<td>p.Q823*</td>
<td>exon22</td>
<td>stopgain</td>
</tr>
<tr>
<td>FIG4</td>
<td>NM_014845</td>
<td>c.2639T>A</td>
<td>p.I880N</td>
<td>exon23</td>
<td>missense</td>
</tr>
<tr>
<td>FIG4</td>
<td>NM_014845</td>
<td>c.2650C>T</td>
<td>p.Q884*</td>
<td>exon23</td>
<td>stopgain</td>
</tr>
<tr>
<td>FUS</td>
<td>NM_001170634</td>
<td>c.785A>G</td>
<td>p.N262S</td>
<td>exon7</td>
<td>missense</td>
</tr>
<tr>
<td>FUS</td>
<td>NM_001170634</td>
<td>c.1480C>T</td>
<td>p.R494*</td>
<td>exon14</td>
<td>stopgain</td>
</tr>
<tr>
<td>FUS</td>
<td>NM_001170634</td>
<td>c.1539G>C</td>
<td>p.R513S</td>
<td>exon15</td>
<td>missense</td>
</tr>
<tr>
<td>FUS</td>
<td>NM_001170634</td>
<td>c.1552C>G</td>
<td>p.Q518E</td>
<td>exon15</td>
<td>missense</td>
</tr>
<tr>
<td>GLE1</td>
<td>NM_001003722</td>
<td>c.1771C>T</td>
<td>p.Q591*</td>
<td>exon12</td>
<td>stopgain</td>
</tr>
<tr>
<td>GRN</td>
<td>NM_002087</td>
<td>c.763C>A</td>
<td>p.L255M</td>
<td>exon8</td>
<td>missense</td>
</tr>
<tr>
<td>GRN</td>
<td>NM_002087</td>
<td>c.1562G>A</td>
<td>p.C521Y</td>
<td>exon12</td>
<td>missense</td>
</tr>
<tr>
<td>GRN</td>
<td>NM_002087</td>
<td>c.1595C>A</td>
<td>p.T532N</td>
<td>exon12</td>
<td>missense</td>
</tr>
<tr>
<td>HNRNPA1</td>
<td>NM_031157</td>
<td>c.380A>G</td>
<td>p.Q127R</td>
<td>exon4</td>
<td>missense</td>
</tr>
<tr>
<td>Gene</td>
<td>Accession</td>
<td>Mutation</td>
<td>Change</td>
<td>Location</td>
<td>Type</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>HNRNPA1</td>
<td>NM_031157</td>
<td>c.666C>G</td>
<td>p.F222L</td>
<td>exon6</td>
<td>missense</td>
</tr>
<tr>
<td>HNRNPA1</td>
<td>NM_031157</td>
<td>c.824G>T</td>
<td>p.G275V</td>
<td>exon8</td>
<td>missense</td>
</tr>
<tr>
<td>HNRNPA1</td>
<td>NM_031157</td>
<td>c.876C>G</td>
<td>p.N292K</td>
<td>exon8</td>
<td>missense</td>
</tr>
<tr>
<td>HNRNPA1</td>
<td>NM_031157</td>
<td>c.883G>A</td>
<td>p.G295R</td>
<td>exon8</td>
<td>missense</td>
</tr>
<tr>
<td>KIF5A</td>
<td>NM_004984</td>
<td>c.340C>T</td>
<td>p.R114*</td>
<td>exon4</td>
<td>stopgain</td>
</tr>
<tr>
<td>KIF5A</td>
<td>NM_004984</td>
<td>c.1463T>G</td>
<td>p.L488R</td>
<td>exon14</td>
<td>missense</td>
</tr>
<tr>
<td>KIF5A</td>
<td>NM_004984</td>
<td>c.2152C>T</td>
<td>p.R718W</td>
<td>exon19</td>
<td>missense</td>
</tr>
<tr>
<td>KIF5A</td>
<td>NM_004984</td>
<td>c.2263G>A</td>
<td>p.E755K</td>
<td>exon20</td>
<td>missense</td>
</tr>
<tr>
<td>KIF5A</td>
<td>NM_004984</td>
<td>c.2757del</td>
<td>p.K920Nfs*128</td>
<td>exon25</td>
<td>frameshift</td>
</tr>
<tr>
<td>MAPT</td>
<td>NM_016834</td>
<td>c.149T>C</td>
<td>p.I50T</td>
<td>exon3</td>
<td>missense</td>
</tr>
<tr>
<td>MAPT</td>
<td>NM_016834</td>
<td>c.736G>A</td>
<td>p.G246S</td>
<td>exon7</td>
<td>missense</td>
</tr>
<tr>
<td>MAPT</td>
<td>NM_016834</td>
<td>c.880T>C</td>
<td>p.S294P</td>
<td>exon9</td>
<td>missense</td>
</tr>
<tr>
<td>MAPT</td>
<td>NM_016834</td>
<td>c.913G>A</td>
<td>p.V305I</td>
<td>exon9</td>
<td>missense</td>
</tr>
<tr>
<td>MATR3</td>
<td>NM_018834</td>
<td>c.368A>G</td>
<td>p.D123G</td>
<td>exon2</td>
<td>missense</td>
</tr>
<tr>
<td>MATR3</td>
<td>NM_018834</td>
<td>c.2148+2T>G</td>
<td>p.K920Nfs*128</td>
<td>exon14</td>
<td>splicing</td>
</tr>
<tr>
<td>MATR3</td>
<td>NM_018834</td>
<td>c.2371+2T>A</td>
<td>p.K920Nfs*128</td>
<td>exon14</td>
<td>splicing</td>
</tr>
<tr>
<td>NEFH</td>
<td>NM_021076</td>
<td>c.1036C>T</td>
<td>p.R346C</td>
<td>exon2</td>
<td>missense</td>
</tr>
<tr>
<td>NEFH</td>
<td>NM_021076</td>
<td>c.1723C>T</td>
<td>p.P575S</td>
<td>exon4</td>
<td>missense</td>
</tr>
<tr>
<td>NEFH</td>
<td>NM_021076</td>
<td>c.1783C>T</td>
<td>p.P595S</td>
<td>exon4</td>
<td>missense</td>
</tr>
<tr>
<td>NEFH</td>
<td>NM_021076</td>
<td>c.2461A>G</td>
<td>p.K821E</td>
<td>exon4</td>
<td>missense</td>
</tr>
<tr>
<td>Gene</td>
<td>Accession</td>
<td>Mutation</td>
<td>Amino Acid Effect</td>
<td>Exon</td>
<td>Type</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.3502C>T</td>
<td>p.H1168Y</td>
<td>exon32</td>
<td>missense</td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.3451A>C</td>
<td>p.I1151L</td>
<td>exon32</td>
<td>missense</td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.3419_3422del</td>
<td>p.I1140Rfs*17</td>
<td>exon31</td>
<td>frameshift</td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.3373G>A</td>
<td>p.E1125K</td>
<td>exon31</td>
<td>missense</td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.3214delA</td>
<td>p.T1072Lfs*20</td>
<td>exon30</td>
<td>frameshift</td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.2816C>G</td>
<td>p.S939*</td>
<td>exon28</td>
<td>stopgain</td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.2698C>G</td>
<td>p.D900Y</td>
<td>exon28</td>
<td>missense</td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.2523_2526del</td>
<td>p.N841Kfs*53</td>
<td>exon26</td>
<td>frameshift</td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.1226G>A</td>
<td>p.W409*</td>
<td>exon15</td>
<td>stopgain</td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.1129_1132del</td>
<td>p.Q377Rfs*7</td>
<td>exon13</td>
<td>frameshift</td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.781C>T</td>
<td>p.R261C</td>
<td>exon10</td>
<td>missense</td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.577C>T</td>
<td>p.L193F</td>
<td>exon9</td>
<td>missense</td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.464+1G>AG+</td>
<td>.</td>
<td>exon6 GT splicing donor</td>
<td></td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.449C>G</td>
<td>p.A150G</td>
<td>exon7</td>
<td>missense</td>
</tr>
<tr>
<td>NEK1</td>
<td>NM_001199399</td>
<td>c.380G>A</td>
<td>p.R127Q</td>
<td>exon6</td>
<td>missense</td>
</tr>
<tr>
<td>OPTN</td>
<td>NM_001008212</td>
<td>c.247C>T</td>
<td>p.R83C</td>
<td>exon4</td>
<td>missense</td>
</tr>
<tr>
<td>OPTN</td>
<td>NM_001008212</td>
<td>c.265C>T</td>
<td>p.Q89*</td>
<td>exon4</td>
<td>stopgain</td>
</tr>
<tr>
<td>OPTN</td>
<td>NM_001008212</td>
<td>c.332T>G</td>
<td>p.L111R</td>
<td>exon4</td>
<td>missense</td>
</tr>
<tr>
<td>OPTN</td>
<td>NM_001008212</td>
<td>c.403G>T</td>
<td>p.E135*</td>
<td>exon5</td>
<td>stopgain</td>
</tr>
<tr>
<td>OPTN</td>
<td>NM_001008212</td>
<td>c.644G>A</td>
<td>p.R215K</td>
<td>exon7</td>
<td>missense</td>
</tr>
<tr>
<td>Gene</td>
<td>Accession</td>
<td>Variant</td>
<td>Amino Acid Change</td>
<td>Exon</td>
<td>Type</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>OPTN</td>
<td>NM_001008212</td>
<td>c.917_921del</td>
<td>p.T307Sfs*3</td>
<td>exon9</td>
<td>frameshift</td>
</tr>
<tr>
<td>OPTN</td>
<td>NM_001008212</td>
<td>c.1499T>C</td>
<td>p.L500P</td>
<td>exon13</td>
<td>missense</td>
</tr>
<tr>
<td>OPTN</td>
<td>NM_001008212</td>
<td>c.1634G>A</td>
<td>p.R545Q</td>
<td>exon15</td>
<td>missense</td>
</tr>
<tr>
<td>OPTN</td>
<td>NM_001008212</td>
<td>c.1639C>T</td>
<td>p.Q547*</td>
<td>exon15</td>
<td>stopgain</td>
</tr>
<tr>
<td>OPTN</td>
<td>NM_001008212</td>
<td>c.1719G>A</td>
<td>p.M573I</td>
<td>exon15</td>
<td>missense</td>
</tr>
<tr>
<td>PFN1</td>
<td>NM_005022</td>
<td>c.67G>A</td>
<td>p.V23M</td>
<td>exon1</td>
<td>missense</td>
</tr>
<tr>
<td>PRPH</td>
<td>NM_006262</td>
<td>c.487G>T</td>
<td>p.D163Y</td>
<td>exon1</td>
<td>missense</td>
</tr>
<tr>
<td>PRPH</td>
<td>NM_006262</td>
<td>c.611T>A</td>
<td>p.V204E</td>
<td>exon3</td>
<td>missense</td>
</tr>
<tr>
<td>PRPH</td>
<td>NM_006262</td>
<td>c.996+1G>A</td>
<td>.</td>
<td>exon6</td>
<td>GT splicing</td>
</tr>
<tr>
<td>PRPH</td>
<td>NM_006262</td>
<td>c.1024G>A</td>
<td>p.E342K</td>
<td>exon6</td>
<td>missense</td>
</tr>
<tr>
<td>PRPH</td>
<td>NM_006262.4</td>
<td>c.1222_1223insG</td>
<td>p.S408Cfs*19</td>
<td>exon7</td>
<td>frameshift</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAG</td>
</tr>
<tr>
<td>PRPH</td>
<td>NM_006262</td>
<td>c.1409A>C</td>
<td>p.Y470S</td>
<td>exon9</td>
<td>missense</td>
</tr>
<tr>
<td>SETX</td>
<td>NM_015046</td>
<td>c.7240C>T</td>
<td>p.R2414*</td>
<td>exon25</td>
<td>stopgain</td>
</tr>
<tr>
<td>SETX</td>
<td>NM_015046</td>
<td>c.6848_6851del</td>
<td>p.T2283Kfs*32</td>
<td>exon22</td>
<td>frameshift</td>
</tr>
<tr>
<td>SETX</td>
<td>NM_015046</td>
<td>c.6685A>G</td>
<td>p.M2229V</td>
<td>exon21</td>
<td>missense</td>
</tr>
<tr>
<td>SETX</td>
<td>NM_015046</td>
<td>c.1427A>G</td>
<td>p.H476R</td>
<td>exon10</td>
<td>missense</td>
</tr>
<tr>
<td>SETX</td>
<td>NM_015046</td>
<td>c.1427A>C</td>
<td>p.H476P</td>
<td>exon10</td>
<td>missense</td>
</tr>
<tr>
<td>SETX</td>
<td>NM_015046</td>
<td>c.1178T>C</td>
<td>p.L393P</td>
<td>exon10</td>
<td>missense</td>
</tr>
<tr>
<td>SETX</td>
<td>NM_015046</td>
<td>c.638C>T</td>
<td>p.S213F</td>
<td>exon6</td>
<td>missense</td>
</tr>
<tr>
<td>SETX</td>
<td>NM_015046</td>
<td>c.62A>T</td>
<td>p.Y21F</td>
<td>exon3</td>
<td>missense</td>
</tr>
<tr>
<td>Gene</td>
<td>Accession</td>
<td>Mutation</td>
<td>Codon Effect</td>
<td>Exon</td>
<td>Type</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>SETX</td>
<td>NM_015046</td>
<td>c.4A>G</td>
<td>p.S2G</td>
<td>exon3</td>
<td>missense</td>
</tr>
<tr>
<td>SOD1</td>
<td>NM_000454</td>
<td>c.16G>A</td>
<td>p.V6M</td>
<td>exon1</td>
<td>missense</td>
</tr>
<tr>
<td>SOD1</td>
<td>NM_000454</td>
<td>c.59A>G</td>
<td>p.N20S</td>
<td>exon1</td>
<td>missense</td>
</tr>
<tr>
<td>SOD1</td>
<td>NM_000454</td>
<td>c.115C>G</td>
<td>p.L39V</td>
<td>exon2</td>
<td>missense</td>
</tr>
<tr>
<td>SOD1</td>
<td>NM_000454</td>
<td>c.197A>G</td>
<td>p.N66S</td>
<td>exon3</td>
<td>missense</td>
</tr>
<tr>
<td>SOD1</td>
<td>NM_000454</td>
<td>c.217G>A</td>
<td>p.G73S</td>
<td>exon3</td>
<td>missense</td>
</tr>
<tr>
<td>SOD1</td>
<td>NM_000454</td>
<td>c.271G>A</td>
<td>p.D91N</td>
<td>exon4</td>
<td>missense</td>
</tr>
<tr>
<td>SOD1</td>
<td>NM_000454</td>
<td>c.281G>A</td>
<td>p.G94D</td>
<td>exon4</td>
<td>missense</td>
</tr>
<tr>
<td>SOD1</td>
<td>NM_000454</td>
<td>c.357+1G>T</td>
<td>.</td>
<td>exon5</td>
<td>GT splicing</td>
</tr>
<tr>
<td>SOD1</td>
<td>NM_000454</td>
<td>c.409A>T</td>
<td>p.K137*</td>
<td>exon5</td>
<td>stopgain</td>
</tr>
<tr>
<td>SOD1</td>
<td>NM_000454</td>
<td>c.435G>C</td>
<td>p.L145F</td>
<td>exon5</td>
<td>missense</td>
</tr>
<tr>
<td>SOD1</td>
<td>NM_000454</td>
<td>c.435G>T</td>
<td>p.L145F</td>
<td>exon5</td>
<td>missense</td>
</tr>
<tr>
<td>SOD1</td>
<td>NM_000454</td>
<td>c.442G>A</td>
<td>p.G148S</td>
<td>exon5</td>
<td>missense</td>
</tr>
<tr>
<td>SPAST</td>
<td>NM_001363875</td>
<td>c.455T>C</td>
<td>p.I152T</td>
<td>exon2</td>
<td>missense</td>
</tr>
<tr>
<td>SPAST</td>
<td>NM_001363875</td>
<td>c.806C>T</td>
<td>p.S269F</td>
<td>exon5</td>
<td>missense</td>
</tr>
<tr>
<td>SPAST</td>
<td>NM_001363875</td>
<td>c.1526A>G</td>
<td>p.D509G</td>
<td>exon14</td>
<td>missense</td>
</tr>
<tr>
<td>SPG11</td>
<td>NM_025137</td>
<td>c.6877C>T</td>
<td>p.R2293W</td>
<td>exon38</td>
<td>missense</td>
</tr>
<tr>
<td>SPG11</td>
<td>NM_025137</td>
<td>c.6857G>C</td>
<td>p.R2286P</td>
<td>exon38</td>
<td>missense</td>
</tr>
<tr>
<td>SPG11</td>
<td>NM_025137</td>
<td>c.6094T>C</td>
<td>p.C2032R</td>
<td>exon32</td>
<td>missense</td>
</tr>
<tr>
<td>SPG11</td>
<td>NM_025137</td>
<td>c.6010T>G</td>
<td>p.L2004V</td>
<td>exon32</td>
<td>missense</td>
</tr>
<tr>
<td>Gene</td>
<td>Refseq ID</td>
<td>Variant</td>
<td>Mutation</td>
<td>Exon</td>
<td>Type</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>SPG11</td>
<td>NM_025137</td>
<td>c.5414G>A</td>
<td>p.R1805H</td>
<td>exon30</td>
<td>missense</td>
</tr>
<tr>
<td>SPG11</td>
<td>NM_025137</td>
<td>c.3095C>T</td>
<td>p.P1032L</td>
<td>exon17</td>
<td>missense</td>
</tr>
<tr>
<td>SPG11</td>
<td>NM_025137</td>
<td>c.148C>T</td>
<td>p.Q50*</td>
<td>exon1</td>
<td>stopgain</td>
</tr>
<tr>
<td>SQSTM1</td>
<td>NM_003900</td>
<td>c.447C>G</td>
<td>p.D149E</td>
<td>exon3</td>
<td>missense</td>
</tr>
<tr>
<td>SQSTM1</td>
<td>NM_003900</td>
<td>c.775G>A</td>
<td>p.V259M</td>
<td>exon6</td>
<td>missense</td>
</tr>
<tr>
<td>SQSTM1</td>
<td>NM_003900</td>
<td>c.775G>C</td>
<td>p.V259L</td>
<td>exon6</td>
<td>missense</td>
</tr>
<tr>
<td>SQSTM1</td>
<td>NM_003900</td>
<td>c.1043C>T</td>
<td>p.P348L</td>
<td>exon7</td>
<td>missense</td>
</tr>
<tr>
<td>SQSTM1</td>
<td>NM_003900</td>
<td>c.1084G>A</td>
<td>p.E362K</td>
<td>exon7</td>
<td>missense</td>
</tr>
<tr>
<td>SQSTM1</td>
<td>NM_003900</td>
<td>c.1142C>T</td>
<td>p.A381V</td>
<td>exon7</td>
<td>missense</td>
</tr>
<tr>
<td>SS18L1</td>
<td>NM_001301778</td>
<td>c.253A>C</td>
<td>p.M85L</td>
<td>exon7</td>
<td>missense</td>
</tr>
<tr>
<td>TAF15</td>
<td>NM_139215</td>
<td>c.329A>G</td>
<td>p.Y110C</td>
<td>exon6</td>
<td>missense</td>
</tr>
<tr>
<td>TAF15</td>
<td>NM_139215</td>
<td>c.1088+1G>A</td>
<td>p.A3+1</td>
<td>exon14</td>
<td>splicing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GT donor</td>
</tr>
<tr>
<td>TARDBP</td>
<td>NM_007375</td>
<td>c.800A>G</td>
<td>p.N267S</td>
<td>exon6</td>
<td>missense</td>
</tr>
<tr>
<td>TARDBP</td>
<td>NM_007375</td>
<td>c.1144G>A</td>
<td>p.A382T</td>
<td>exon6</td>
<td>missense</td>
</tr>
<tr>
<td>TARDBP</td>
<td>NM_007375</td>
<td>c.1169A>G</td>
<td>p.N390S</td>
<td>exon6</td>
<td>missense</td>
</tr>
<tr>
<td>TARDBP</td>
<td>NM_007375</td>
<td>c.1178C>T</td>
<td>p.S393L</td>
<td>exon6</td>
<td>missense</td>
</tr>
<tr>
<td>TBK1</td>
<td>NM_013254</td>
<td>c.254T>C</td>
<td>p.I85T</td>
<td>exon4</td>
<td>missense</td>
</tr>
<tr>
<td>TBK1</td>
<td>NM_013254</td>
<td>c.454G>C</td>
<td>p.V152L</td>
<td>exon5</td>
<td>missense</td>
</tr>
<tr>
<td>TBK1</td>
<td>NM_013254</td>
<td>c.521A>G</td>
<td>p.Y174C</td>
<td>exon5</td>
<td>missense</td>
</tr>
<tr>
<td>Gene</td>
<td>Reference ID</td>
<td>Variant Description</td>
<td>Description</td>
<td>Exon</td>
<td>Type</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>TBK1</td>
<td>NM_013254</td>
<td>c.992+1G>A</td>
<td>exon9 splicing</td>
<td>.</td>
<td>GT donor</td>
</tr>
<tr>
<td>TBK1</td>
<td>NM_013254</td>
<td>c.1343_1346del</td>
<td>exon12 frameshift</td>
<td>p.I450Kfs*15</td>
<td></td>
</tr>
<tr>
<td>TIA1</td>
<td>NM_022173</td>
<td>c.1154C>T</td>
<td>exon13 missense</td>
<td>p.T385I</td>
<td></td>
</tr>
<tr>
<td>TIA1</td>
<td>NM_022173</td>
<td>c.746A>C</td>
<td>exon10 missense</td>
<td>p.K249T</td>
<td></td>
</tr>
<tr>
<td>TIA1</td>
<td>NM_022173</td>
<td>c.95C>A</td>
<td>exon2 missense</td>
<td>p.P32H</td>
<td></td>
</tr>
<tr>
<td>TIA1</td>
<td>NM_022173</td>
<td>c.94C>A</td>
<td>exon2 missense</td>
<td>p.P32T</td>
<td></td>
</tr>
<tr>
<td>TUBA4A</td>
<td>NM_001278552</td>
<td>c.1312G>A</td>
<td>exon4 missense</td>
<td>p.D438N</td>
<td></td>
</tr>
<tr>
<td>TUBA4A</td>
<td>NM_001278552</td>
<td>c.1184_1190del</td>
<td>exon4 frameshift</td>
<td>p.G395Afs*67</td>
<td></td>
</tr>
<tr>
<td>TUBA4A</td>
<td>NM_001278552</td>
<td>c.1045A>T</td>
<td>exon4 missense</td>
<td>p.T349S</td>
<td></td>
</tr>
<tr>
<td>TUBA4A</td>
<td>NM_001278552</td>
<td>c.148delG</td>
<td>exon2 frameshift</td>
<td>p.A50Qfs*89</td>
<td></td>
</tr>
<tr>
<td>UBQLN2</td>
<td>NM_013444</td>
<td>c.401C>T</td>
<td>exon1 missense</td>
<td>p.T134I</td>
<td></td>
</tr>
<tr>
<td>UBQLN2</td>
<td>NM_013444</td>
<td>c.1172A>G</td>
<td>exon1 missense</td>
<td>p.Y391C</td>
<td></td>
</tr>
<tr>
<td>UBQLN2</td>
<td>NM_013444</td>
<td>c.1505G>A</td>
<td>exon1 missense</td>
<td>p.G502D</td>
<td></td>
</tr>
<tr>
<td>VAPB</td>
<td>NM_004738</td>
<td>c.332C>T</td>
<td>exon4 missense</td>
<td>p.P111L</td>
<td></td>
</tr>
<tr>
<td>VCP</td>
<td>NM_001354927</td>
<td>c.2086C>T</td>
<td>exon16 missense</td>
<td>p.R696C</td>
<td></td>
</tr>
<tr>
<td>VCP</td>
<td>NM_001354927</td>
<td>c.2002A>G</td>
<td>exon15 missense</td>
<td>p.R668G</td>
<td></td>
</tr>
<tr>
<td>VCP</td>
<td>NM_001354927</td>
<td>c.265T>C</td>
<td>exon4 missense</td>
<td>p.Y89H</td>
<td></td>
</tr>
</tbody>
</table>
eTable 2A. Oligogenic combinations in our cohort

<table>
<thead>
<tr>
<th>Mutation 1</th>
<th>Mutation 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9orf72 GGGGCC exp</td>
<td>CHCHD10:c.239C>T:p.P80L</td>
</tr>
</tbody>
</table>

eTable 2B. Analysis of oligogenic frequency and effect of multiple variants on age at disease onset in our cohort

<table>
<thead>
<tr>
<th></th>
<th>Oligogenic cases</th>
<th>Monogenic cases</th>
<th>Binomial p-value</th>
<th>ANOVA p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases (% cohort)</td>
<td>13 (1.3%)</td>
<td>266 (25.6%)</td>
<td>0.98</td>
<td>-</td>
</tr>
<tr>
<td>Age at onset (SD)</td>
<td>59.9 (11.9)</td>
<td>63.9 (11.2)</td>
<td>-</td>
<td>0.1310</td>
</tr>
</tbody>
</table>
Supplementary References

