INTRODUCTION

Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system. A novel coronavirus, namely SARS-CoV-2, has been recently responsible for the highly infectious disease referred as COVID-19, rapidly spreading all over the world. Many vaccines have been developed to control COVID-19 pandemic, including the mRNA vaccines Pfizer/BioNTech (BNT162b2) and Moderna (mRNA1273). The vaccination of people with MS (pwMS) has been recommended by several national and international MS societies. However, effectiveness and safety of anti-COVID-19 mRNA vaccines in MS need to be confirmed. The aim of this study was to evaluate the short-term risk of clinical relapses in pwMS in the 2 months after the first administration of an mRNA COVID-19 vaccine.

PATIENTS AND METHODS

Twenty-five Italian MS tertiary centres participated to this prospective, self-controlled, multicentric observational study. In Italy, COVID-19 population vaccination started at the end of December 2020 and first involved healthcare professionals. All pwMS, diagnosed according to McDonald’s 2017 criteria, who underwent the first dose of an mRNA COVID-19 vaccine within January 2021 were recruited from each participating centre. All patients received Pfizer/BioNTech BNT162b2 vaccine according to vaccine availability in Italy. Database lock was planned on 31 March so that all patients were followed for at least 2 months after the first dose. The following data were collected: (1) sex; (2) age and disease duration; (3) disease course (relapsing remitting; secondary progressive; primary progressive); (4) disability score (Expanded Disability Status Scale, EDSS); (5) clinical relapses in the year before vaccination, with specific regard to the 2 months immediately preceding vaccination; (6) MRI activity in the year before vaccination (new T2 or Gd enhancing—Gd+—lesions); (7) previous molecular swab confirmed SARS-CoV-2 infection; (8) vaccine administration date and (9) disease-modifying treatments at the time of vaccination. The presence, characteristics and number of relapses in the 60 days after the first administration of the vaccine were recorded. A relapse was defined as a clinical episode suggestive of demyelination developing acutely or subacutely, with a duration of at least 24 hours in the absence of fever or infection. The interval between vaccination and clinical relapse was calculated.

RESULTS

We included 324 pwMS exposed to the Pfizer/BioNTech BNT162b2 vaccine. Cohort characteristics are reported in Table 1. Overall, 28 out of 324 (8.6%) patients had experienced SARS-CoV-2 infection confirmed by a molecular swab (224.8 ± 103.3 days before the first dose of vaccination). Overall, 322/324 patients (99.4%) underwent both the doses of the vaccine with an interval between doses of 21.5 ± 4 days. Two patients did not complete the vaccination schedule: one because of the evidence of SARS-CoV-2 infection after the first dose and the other because of the evidence of radiological activity without clinical relapses in an already planned MRI scan, 3 days after the first dose, for which the second vaccine dose was postponed. In the 2 months before vaccination, six clinical relapses reported as count and percentages. To test the difference between relapses incidence in the 2 months before and after vaccination, we fitted a paired negative binomial model. Demographical and clinical variables (age, gender, disease duration and EDSS) were also included as covariates. For all the tests, significance was set at a p value < 0.05.

Table 1 Characteristics of the cohort

<table>
<thead>
<tr>
<th>Demographic features</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>42.7±10.8</td>
</tr>
<tr>
<td>Gender (female)</td>
<td>242 (74.7%)</td>
</tr>
<tr>
<td>Disease course: RR</td>
<td>303 (93.5%)</td>
</tr>
<tr>
<td>SP</td>
<td>15 (4.6%)</td>
</tr>
<tr>
<td>PP</td>
<td>6 (1.9%)</td>
</tr>
<tr>
<td>Disease duration (years)</td>
<td>11.9±8.5</td>
</tr>
<tr>
<td>EDSS Score at the time of vaccination</td>
<td>2.1±1.5</td>
</tr>
</tbody>
</table>

Continuous variables are reported as mean±SD. Categorical variables are reported as number (percentage).

DMTs, disease-modifying treatments; EDSS, Expanded Disability Status Scale; PP, primary progressive; RR, relapsing remitting; SP, secondary progressive.

Correlation analysis showed a significant positive correlation between age and disease duration (p = 0.012). DISEASE course was also found to influence the number of relapses in the 2 months before vaccination (p = 0.002). No significant correlation was observed between the number of relapses in the 2 months before vaccination and disease duration (p = 0.119). In contrast, a positive correlation between disease duration and age (p = 0.044) was found. No significant correlation was found between disease duration and disease course (p = 0.470).

mRNA COVID-19 vaccines do not increase the short-term risk of clinical relapses in multiple sclerosis

STATISTICAL ANALYSIS

Continuous variables are reported as mean±SD, while categorical variables are reported as count and percentages. To test the difference between relapses incidence in the 2 months before and after vaccination, we fitted a paired negative binomial model. Demographical and clinical variables (age, gender, disease duration and EDSS) were also included as covariates. For all the tests, significance was set at a p value < 0.05.

RESULTS

We included 324 pwMS exposed to the Pfizer/BioNTech BNT162b2 vaccine. Cohort characteristics are reported in Table 1. Overall, 28 out of 324 (8.6%) patients had experienced SARS-CoV-2 infection confirmed by a molecular swab (224.8 ± 103.3 days before the first dose of vaccination). Overall, 322/324 patients (99.4%) underwent both the doses of the vaccine with an interval between doses of 21.5 ± 4 days. Two patients did not complete the vaccination schedule: one because of the evidence of SARS-CoV-2 infection after the first dose and the other because of the evidence of radiological activity without clinical relapses in an already planned MRI scan, 3 days after the first dose, for which the second vaccine dose was postponed. In the 2 months before vaccination, six clinical relapses...
were reported in 6 out of 324 patients (1.9%). In the 2 months after vaccination, seven clinical relapses occurred in 7/324 patients (2.2%). The incidence of relapses in the 2 months before and after vaccination was not statistically different (B=0.154, 95%CI –0.948 to 1.288, p=0.78). Also, demographical (age, gender) and clinical disease characteristics (disease duration, EDSS) had no effect on relapses occurrence. Five of the relapsing patients were women. Five relapses were monofocal and two were multifocal. The mean time interval between the first dose of vaccination and the clinical relapse was 44±11.6 days. At the time of vaccination, three patients were treated with dimethyl fumarate, one with glatiramer acetate, two with ocrelizumab and one was not treated.

DISCUSSION

Vaccines safety in pwMS has been matter of debate. In the current COVID-19 pandemic scenario, the availability of mRNA vaccines warrants the urgent need to define their safety in pwMS. Our preliminary analysis demonstrated that the Pfizer/BioNtech BNT162b2 vaccine does not increase the short-term risk of clinical reactivation in pwMS. Recently, Achiron et al reported in an observational study on 555 pwMS a similar rate of patients with acute relapse after Pfizer/BioNtech BNT162b2 vaccine. No increased risk of relapse activity was estimated comparing that cohort with a cohort of non-vaccinated patients evaluated in the same period in the pre-pandemic era.

The latter study, however, suffers of the limitation of an heterogeneous follow-up period (about 20% of patients with relapses were followed for less than 14 days after immunisation) which might have lowered the number of recorded relapses. Our study is the first prospective study including a large cohort of patients with MS who were followed, with a self-controlled design, for at least 2 months after the first dose of the Pfizer/BioNTech BNT162b2 vaccine. A limit of our study, mainly related to the Pfizer/BioNTech BNT162b2 vaccine. No increased risk of clinical relapses, as well as the short-term follow-up. Larger observational studies with longer follow-up would be desirable. Moreover, due to the low number of patients with progressive MS in the cohort (21 out of 324 subjects, 6.5%), no clear conclusions can be drawn on the effects of Pfizer/BioNTech BNT162b2 vaccination on disease worsening in progressive MS. Despite these limitations, we think that the results of our study can improve clinical practice driving clinical decisions and support the recommendation to promote access of pwMS to COVID-19 vaccination.

Massimiliano Di Filippo,1 Cinzia Cordioli,2 Simona Malucchi,3 Pietro Annovazzi,2 Paola Cavalla,4 Valentina Torri Clerico,5 Paolo Ragonese6 7 Viviana Nocti,8 Marta Radaelli,9 Alice Laroni,10 Fabio Buttali,11 Lorena Lorenci12 13 Diana Ferraro,14 Alberto Gajofatto,15 Luca Prosperini,16 Roberta Fantoni17 18 Avantaggiato Ronca14 Roberta Lanzillo,19 Marcello Mocca,20 21 Mariella Clerico,22 Giovanna De Luca,23 Valentina Tomassini,18 19 Lorena Calabrese,24 Angela Borrelli,25 Damiano Paolicelli,26 Giorgia Teresa Maniscalco,27 Paola Gazzola,28 Antonio Gallo,29 Claudio Solaro,30 Eleonora Cocco, 31 Claudio Gasperini,13 32 Carla Tortorella,14 15 On behalf of the RIREMS (Rising Researchers in MS) group

1Clinica Neurologica, Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Umbria, Italy
2Centro Sclerosi Multipla, ASST Spedali Civili di Brescia, Ospedale di Montichiari, Brescia, Italy
3A.O.U. Centro Sclerosi Multipla, San Luigi Gonzaga, Orbassano, Italy
4U.O.C. Centro Sclerosi Multipla, ASST Valle Olona, Gallarate, Italy
5Centro Sclerosi Multipla e Neurologia 1 D.U, Dipartimento di Neuroimmunologia e Malattie Neuromuscolari, Milan, Italy
6Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Palermo, Italy
7Centro Sclerosi Multipla, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Dipartimento di Neuroimmunologia e Malattie Neuromuscolari, Milan, Italy
8Centro di Neurologia, Policlinico Universitario Agostino Gemelli IRCCS – Università Cattolica del Sacro Cuore, Rome, Italy
9Unità di Neurologia, ASST Papa Giovanni XXIII, Bergamo, Italy
10Dipartimento di Neuroscienze, Riabilitazione, Ostiartologia, Genetica, Maternità e Infanzia Università di Genova, IRCCS Ospedale Policlinico San Martino, Genova, Italy
11Unità di Neurologia, IRCCS Neumored, Pozzilli, Italy
12Centro Regionale Sclerosi Multipla, ASVL Cagliari, ATS Sardegna, Cagliari, Italy
13Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
14Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
15Dipartimento di Neuroscienze, Ospedale San Camillo-Forlanini, Rome, Italy
16O.U.C Neurologia, Policlinico Universitario Tor Vergata, Rome, Italy
17Dipartimento di Neuroscienze e Scienze Reproduttive ed Odontostomatologie, Università degli Studi Federico II, Naples, Italy
18Dipartimento di Scienze Cliniche e Biologiche dell’Università di Torino, AOU San Luigi Gonzaga di Orbassano, Orbassano, Italy
19Centro Sclerosi Multipla, Clinica Neurologica, Ospedale Universitario SS Annunziata, Chieti, Italy
20Istituto di Tomografia Avanzata Biomediche (ITA), Dipartimento di Neuroscienze, Imaging e Scienze Cliniche, Facolta’ di Medicina e Chirurgia, Universita’ di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy
21Centro Sclerosi Multipla, Università di Verona, Verona, Italy
22Clinica Neurologica, Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
23Dipartimento di Scienze Mediche di base, Neuroimmunologia ed Organi di Senso, Università degli Studi di Bari Aldo Moro, Bari, Italy
24Ospedale “A. Cardarelli”, Dipartimento Emergenza Accettazione, Neurologia, Centro Regionale per la Sclerosi Multipla, Naples, Italy
25Centro Dipartimentale diagnostici e cura delle malattie demielinizanti, Dipartimento Testa Colla, ASL3 Ospedale P.A. Micone, Genova, Italy
26Dipartimento di Scienze Mediche e Chirurgiche Avanzate, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
27Unità di Neuroradiologia, Ospedale Monza. L. Novarese, Moncrivello, Italy
28Centro Regionale Sclerosi Multipla, ASVL Cagliari, ATS Sardegna, Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, Cagliari, Italy
29Correspondence to Prof. Massimiliano Di Filippo, Clinica Neurologica, Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, IT, University of Perugia, Perugia, Umbria, Italy; massimiliano.dilippo@unipg.it
30Acknowledgements MDF and AB thank Lorenzo Gaetani for critically reading the manuscript and useful suggestions. CC thanks all the staff members at the “Centro Sclerosi Multipla, Azienda Ospedaliera Universitaria Civil– Brescia, Italy” for data collection at their clinical site.
31Contributors MDF and CT conceived the study. All authors provided clinical data of patients and contributed to the writing of the manuscript and approved its final version. MDF, AB and CT prepared the draft of the manuscript.
32Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.
33Competing interests MDF participated on advisory boards for and received speaker or writing honoraria and funding for traveling from Bayer, Biogen Idec, Genzyme, Merck, Mylan, Novartis, Roche and Teva. CC received consulting fees for speaking and advisory board from Biogen, Novartis, Merck Serono, Almirall and Roche. SM received honoraria from speaking and advisory board from Biogen, Merck Serono, Novartis and Sanofi Genzyme. PC participated on advisory boards for, received speaker or writing honoraria and funding for traveling from Almirall, Biogen, Sanofi Genzyme, Merck-Serono, Novartis, Roche and Teva.
34VN has received consulting fees from Novartis, Roche, Mylan, Biogen Idec, Merck, Teva and Bayer; speaker and writing honoraria from Mylan, Teva, Biogen Idec, Bayer, Sanofi Genzyme and Merck and travel grants from Teva, Biogen Idec, Sanofi Genzyme, Roche and Novartis. MR received honoraria or consultation fees from Biogen Idec, Sanofi Genzyme, Novartis and Merck Serono. AL received grants from Fondazione Italiana Sclerosi Multipla, Italian Ministry of Health, Italian Ministry of University and received honoraria or consultation fees from Biogen, Roche, Merck, Genzyme and Novartis. FB received honoraria or consultation fees from Biogen Idec, Roche, Merck Serono, Novartis, Sanofi Genzyme and Teva. DF received travel grants and/or speaker/advisory board honoraria from Merck, Sanofi Genzyme, Roche, Teva, Binding Site, Novartis. BF received honoraria or consultation fees from Roche, Novartis, Merck and Sanofi Genzyme. RL received honoraria from Biogen, Merck, Sanofi and Roche and
Novartis for lectures or scientific boards. MM has received research grants from ECTRIMS-MAGNIMS, UK MS Society and Merck; honoraria from EMD Serono, Ipsen, Merck, Roche and Sanofi Genzyme and consultant fees from Veterans Evaluation Services. MaCi received personal compensations for public speaking from Merck, Biogen, Novartis, Sanofi Genzyme, Almirall, Roche and Viatris and received research grants from Merck, Biogen and Novartis. GDL served on scientific advisory boards and received speaking honoraria or travel grants from Biogen, Merck Serono, Novartis, Roche and Sanofi Genzyme. VT participated on advisory boards and received speaking honoraria or travel grants from Biogen, Merck Serono, Novartis, Roche and Sanofi Genzyme. VT received honoraria for consultancy fees from Novartis, Merck and Sanofi Genzyme and advisory boards. Loretif received personal compensation from Veterans Evaluation Services.

Patient consent for publication Not required.

Ethics approval The study was approved by the local ethics committee (CIR Umbria: number 3951/21).

Provenance and peer review Not commissioned; externally peer reviewed.

This article is made freely available for personal use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

© Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.

Received 21 May 2021
Accepted 8 August 2021
Published Online First 18 August 2021

J Neurol Neurosurg Psychiatry 2022;93:448–450. doi:10.1136/jnnp-2021-327200

ORCID iDs

Massimiliano Di Filippo http://orcid.org/0000-0002-1567-5706

Paolo Ragone http://orcid.org/0000-0003-2516-1567

Viviana Nociti http://orcid.org/0000-0002-4607-3948

Lorena Lorello http://orcid.org/0000-0003-2050-2908

Diana Ferraro http://orcid.org/0000-0003-4818-3806

Luca Prosperini http://orcid.org/0000-0003-3237-6267

Roberta Lanzillo http://orcid.org/0000-0001-6388-8180

Marcello Moccia http://orcid.org/0000-0003-2613-3090

Eleonora Coico http://orcid.org/0000-0002-3878-8820

Claudio Gasperi http://orcid.org/0000-0002-3959-4067

Carla Tortorella http://orcid.org/0000-0001-9037-7300

REFERENCES

