Discrepancy between disability and reported well-being after traumatic brain injury

Isabel Rosalie Arianne Retel Helmrich 1,1 David van Klaveren1,2 Nada Andelic3,4 Hester Lingsma1 Andrew Maas 5 David Menon6 Suzanne Polinder7 Cecille Røe3,4 Ewout W Steyerberg1,8 Ernest Van Veen1,9 Lindsay Wilson 10 The CENTER-TBI participants and investigators

ABSTRACT

Background Following traumatic brain injury (TBI), the clinical focus is often on disability. However, patients’ perceptions of well-being can be discordant with their disability level, referred to as the ‘disability paradox’. We aimed to examine the relationship between disability and health-related quality of life (HRQoL) following TBI, while taking variation in personal, injury-related and environment factors into account.

Methods We used data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury study. Disability was assessed 6 months post-injury by the Glasgow Outcome Scale-Extended (GOSE). HRQoL was assessed by the SF-12v2 physical and mental component summary scores and the Quality of Life after Traumatic Brain Injury overall scale. We examined mean total and domain HRQoL scores by GOSE. We quantified variance in HRQoL explained by GOSE, personal, injury-related and environment factors with multivariable regression.

Results Six-month outcome assessments were completed in 2075 patients, of whom 78% had mild TBI (Glasgow Coma Scale 13–15). Patients with severe disability had higher HRQoL than expected on the basis of GOSE alone, particularly after mild TBI. Up to 50% of patients with severe disability reported HRQoL scores within the normative range. GOSE, personal, injury-related and environment factors explained a limited amount of variance in HRQoL (up to 29%).

Conclusion Contrary to the idea that discrepancies are unusual, many patients with poor functional outcomes reported well-being that was at or above the boundary considered satisfactory for the normative sample. These findings challenge the idea that satisfactory HRQoL in patients with disability should be described as ‘paradoxical’ and question common views of what constitutes ‘unfavourable’ outcome.

INTRODUCTION

Disability relates to a set of difficulties a person may experience when interacting with their social and physical environments.1–5 Disability is common following moderate and severe traumatic brain injury (TBI), and increasingly recognised as a consequence of mild TBI.6 Following TBI, individuals often experience impairments in different aspects of their life, including physical, social and cognitive limitations, which may impact their well-being.6–8

Clinical decisions about the management of TBI are often based on the likelihood of the person remaining dependent on others in daily life and therefore having impaired quality of life.9 However, healthy people can overestimate the emotional impact that chronic illness and disability will have on a persons’ well-being.10 Furthermore, patients’ perceptions of quality of life can be discordant with their objective health status.11 This phenomenon has been described as the ‘disability paradox’: a discrepancy between severe disability that is observable by others and good quality of life reported by the patient.11 However, critics argue that the ‘paradox’ depends on the assumption that disability determines well-being.12

Previous reports consistent with the idea of a ‘disability paradox’ indicates that patients with severe disability several months following TBI can experience good or excellent well-being.13 A common explanation for this phenomenon is anosognosia: lack of awareness of disability, as a result of neurological impairment.14 In the classic descriptions of anosognosia, the individual may, for example, deny having hemiparesis after stroke.15 Anosognosia following TBI might be related to behavioural disorders, frontal lobe syndromes and/or problems with social cognition. Other explanations for the ‘disability paradox’ include psychological processes such as coping,11 and personal and environment factors:16 for instance, how patients experience disabilities might be affected by employment, preinjury mental health and satisfaction with social support.12 This is in agreement with the way in which the relationship between health and disability is described by the WHO: disability is a complex construct involving an interaction between the person and their environment.11

To date, the discordance between disability level and well-being and the ‘disability paradox’ have mainly been described as a theoretical construct,11–13 16 or observed in practice without receiving much attention in empirical studies.

We aimed to examine the relationship between functional outcome, and health-related quality of life (HRQOL) in individuals 6 months following TBI, while taking variation in personal, injury-related and environment factors into account. We hypothesised that the relationship between disability and HRQOL differs by injury severity.
Predictors of functional outcome for mild injuries differ from those for more severe injuries, suggesting that these subgroups have distinctive characteristics. Further, we hypothesised that contextual factors, including personal, injury-related and environment factors contribute to explaining variation in HRQoL.

METHODS

Study population

We analysed data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. This is a prospective, multicentre, longitudinal, observational study. Data were collected for patients with a clinical diagnosis of TBI and an indication for CT, presenting within 24 hours of injury in one of the 59 participating centres.

Participants were recruited from December 2014 to December 2017 in 18 countries across Europe and Israel. In our study, patients were included if they were aged ≥16 years and had available GOSE, and SF-12v2 or Quality of Life after Traumatic Brain Injury overall scale (QOLIBRI-OS) scores at 6-months post-injury.

Data for the CENTER-TBI study were entered by participating sites on the Quesgen e-CRF (Quesgen Systems, USA), hosted on the International Neuroinformatics Coordinating Facility (INCF) platform, and extracted via the INCF NeuroRobot tool (INCF, Sweden) (database Core 2.1). Informed consent was obtained from all participants according to local and national requirements.

In our study, we included 2075 patients aged 16 years or over who had completed the outcome assessments at 6 months post-injury (online supplemental file 1). Patients with missing questionnaires or with proxy responses on HRQoL assessments were excluded.

Outcome assessment

Disability

The Glasgow Outcome Scale-Extended (GOSE) is widely used as a global measure of functional outcome and disability. The scale has eight categories: (1) death, (2) vegetative state, (3) lower severe disability, (4) upper severe disability, (5) lower moderate disability, (6) upper moderate disability, (7) lower good recovery, and (8) upper good recovery (online supplemental table 1). In CENTER-TBI, the GOSE was assessed as a structured interview or a questionnaire completed by the patient or a carer. At 6 months follow-up, the format of the assessment was an interview in 79% cases and a questionnaire in 20% (online supplemental table 2). The respondent for the GOSE was almost always the patient, either alone or with a relative or carer (98%). The GOSE was scored centrally combining the ratings of the interviews and the questionnaires. Missing GOSE values were imputed based on GOSE measurements at other time points if available.

Health-related quality of life

We used the Short Form-12 V.2 (SF-12v2) and the QOLIBRI-OS to assess health-related quality of life (HRQoL). The SF-12v2 is a 12-item patient-reported HRQoL outcome which assesses multiple aspects of health-related functioning and well-being. The SF-12v2 comprises eight subscales and two summary scores: physical functioning, role limitations due to physical health, bodily pain and general health perceptions, are included in the physical component summary (PCS) score, and vitality, social functioning, role limitations due to emotional health and general mental health, are included in the mental component summary (MCS) score. The PCS emphasises aspects of functional status, while the MCS incorporates well-being including mental health. The norm-based T-scores (standardised to mean 50 and SD of 10) were calculated for the MCS and PCS. MCS and PCS scores range between 2 (poorest possible HRQoL) and 74 (best possible HRQoL). For the SF-12v2, scores of 45 and above are considered within the normative range for the general population, scores of 40–45 are borderline, and scores below 40 are considered impaired.

The QOLIBRI-OS is a six-item patient-reported HRQoL outcome specifically developed for patients following TBI. The QOLIBRI-OS assesses satisfaction with aspects of life (cognition, self, daily life and autonomy, social relationships, current situation and future prospects) and ranges from 0 (poorest possible HRQoL) to 100 (best possible HRQoL). Scores of 61 and above are considered within the normative range, scores of 52–60 are considered borderline and scores below 52 are considered low or impaired.

Contextual factors related to HRQoL following TBI

We studied the following personal and injury-related factors that are relevant to HRQoL: age, sex, marital status, level of education, type of employment preinjury, preinjury mental health problems, preinjury substance abuse, preinjury health status (The American Society of Anesthesiologists—physical status classification system (ASA-PS)), cause of injury, injury severity, the presence of intracranial abnormality and major extracranial injury (MEI). Initial injury severity was assessed with the GCS. TBI was considered mild in patients with GCS 13–15, moderate in patients with GCS 9–12 and severe in patients with GCS of 3–8. The definition of ‘mild’ injury allows that patients may have an abnormality on CT. Preinjury health status was assessed with the ASA-PS; patients are categorised as ‘normal healthy patient’, ‘mild systemic disease’, ‘severe systemic disease’ or ‘severe systemic disease that is a constant threat to life’. The categories ‘severe systemic disease’ and ‘severe systemic disease that is constant threat to life’ were combined. MEI was defined as an Abbreviated Injury Scale≥3 regarding the following body regions; face, thoracic/ lumbar spine, thorax/chest, abdomen/pelvic contents, extremities and pelvic girdle, or external (skin), thus excluding head and neck. Environment factors involve satisfaction with social support, satisfaction with support from the hospital and health services and satisfaction with support from rehabilitation services 6 months post-injury.

Statistical analyses

Descriptive statistics are presented as medians (IQR) or frequencies (percentage).

We examined the relationships between disability and HRQoL in three ways: (I) we calculated the percentage of patients by GOSE category that have scores in the normative range on the QOLIBRI-OS and MCS; (II) we examined differences between the PCS and the MCS as a measure of dissociation between physical and mental HRQoL and (III) we studied the association of the GOSE and HRQoL using linear regression analysis, including personal, injury-related and environment factors.

All analyses were performed separately for individuals with mild (Glasgow Coma Scale (GCS) 13–15) and moderate/severe (GCS 3–12) TBI. The decision to combine patients with moderate and severe TBI was motivated by the sample size (Moderate/ severe TBI N=466), and the limited number of patients classified as moderate TBI (N=149). To account for differences in the relationship between GOSE and HRQoL following mild, moderate and severe TBI, we performed two-way analysis of
variance (ANOVA) for SF-12 PCS, MCS and QOLIBRI-Os. The relationship between HRQoL following TBI and the GOSE, personal, injury-related and environment factors were analysed with linear regression analyses. The contribution of predictors to the explained variance (R^2) for each outcome was shown graphically by the partial R^2. Furthermore, the associations between the GOSE and the MCS and QOLIBRI-Os total score, adjusted for personal, injury-related and environment factors were shown graphically.

Analyses are performed with R statistical software (R V.3.6.0). We used the *rms* package to fit the regression models.

RESULTS

Study sample

We included 2075 adult patients who completed the GOSE and SF-12 v2 or the QOLIBRI-Os 6 months post-injury (online supplemental figure 1). SF-12 v2 and QOLIBRI-Os completion rates at follow-up differed by GOSE category (online supplemental table 3): patients with GOSE three had the lowest completion rates (QOLIBRI-Os: 60%, SF-12 v2: 65%), while completion rates for patients with higher levels of functioning were higher and generally above 75%.

The median age was 51 years (IQR = 32–64) (table 1). Most patients (78%) were classified as having a mild TBI. A third (35%) had MEI. Fifty-three percent was employed, 23% was retired, and 18% unemployed. About 10% had preinjury mental health problems. Moreover, 40% reported preinjury comorbid health issues.

Patients following moderate/severe TBI were younger, more often male and more often involved in traffic accidents than patients after mild TBI (table 1). Rehabilitation was less often received by patients after mild TBI (24%) compared with those after moderate/severe TBI (79%) (table 2).

Six months after TBI, 186 patients experienced severe disability (9%) (GOSE 3–4), 528 patients experienced moderate disability (25%) (GOSE 5–6) and 1361 (66%) could be classified as having a good recovery (GOSE 7–8) (table 2).

Health-related quality of life stratified by injury severity and disability

Overall, SF-12 PCS, MCS and QOLIBRI-Os scores 6 months following TBI increased with the GOSE (figure 1). In both severity groups, the PCS showed an almost linear relationship with the GOSE. This contrasts with the relationship with the MCS, particularly at lower levels of outcome. Specifically, following mild TBI, patients with a GOSE of 3–4, reported higher MCS scores than patients with a GOSE of 5 (mean 42 (95% CI 38 to 47) and 48 (41 to 47) for GOSE 3 and 4 vs 38 (36 to 40) for GOSE 5) (online supplemental table 4). The results for the QOLIBRI-Os in the mild group mirror those of the MCS (QOLIBRI-Os mean 45 (95% CI 37 to 54) and 54 (48 to 60) for GOSE 3 and 4 vs 48 (44 to 52) for GOSE 5).

Based on the ANOVA, there were significant differences on all HRQoL outcomes by GCS and GOSE. The interaction between GCS and GOSE was significant for MCS (F = 4.137, df 1, p < 0.01) but not for QOLIBRI-Os (F = 0.55, df 1, p = 0.46) and PCS (F = 0.098, df 1, p = 0.75).

For patients following mild TBI, the lowest mean score on the MCS was reported for those with lower moderate disability (GOSE 3) (online supplemental table 4) (mean 38 (95% CI 36 to 40) compared with >42 (95% CI 38 to 47)). Following moderate and severe TBI, patients with lower severe disabilities (GOSE 3) reported the lowest mean MCS scores (mean 41

Table 1 Patients’ demographic and injury characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All patients*</th>
<th>Mild TBI (GCS 3–15)†</th>
<th>Moderate and severe TBI (GCS 3–12)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients 2075</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age median (IQR)</td>
<td>51 (32–64)</td>
<td>53 (35–66)</td>
<td>41 (26–55)</td>
</tr>
<tr>
<td>% Male sex</td>
<td>65</td>
<td>63</td>
<td>70</td>
</tr>
<tr>
<td>Marital status, N (%)</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>1069 (52)</td>
<td>856 (53)</td>
<td>213 (46)</td>
</tr>
<tr>
<td>Missing</td>
<td>117 (6)</td>
<td>87 (5)</td>
<td>30 (6)</td>
</tr>
<tr>
<td>Highest level of education</td>
<td></td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>College/Uni degree</td>
<td>548 (26)</td>
<td>453 (28)</td>
<td>95 (20)</td>
</tr>
<tr>
<td>Currently in school/with diploma or degree-oriented programme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None/primary school</td>
<td>246 (12)</td>
<td>202 (13)</td>
<td>44 (9)</td>
</tr>
<tr>
<td>Secondary/high school</td>
<td>620 (30)</td>
<td>463 (29)</td>
<td>157 (34)</td>
</tr>
<tr>
<td>Employment type N (%)</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Working</td>
<td>1109 (53)</td>
<td>842 (52)</td>
<td>267 (57)</td>
</tr>
<tr>
<td>Homemaker</td>
<td>29 (1)</td>
<td>25 (2)</td>
<td>4 (1)</td>
</tr>
<tr>
<td>Retired</td>
<td>469 (23)</td>
<td>412 (26)</td>
<td>57 (12)</td>
</tr>
<tr>
<td>Sick leave/unable to work</td>
<td>49 (2)</td>
<td>36 (2)</td>
<td>13 (3)</td>
</tr>
<tr>
<td>Student</td>
<td>199 (10)</td>
<td>142 (9)</td>
<td>587*</td>
</tr>
<tr>
<td>Unemployed</td>
<td>91 (4)</td>
<td>66 (4)</td>
<td>25 (5)</td>
</tr>
<tr>
<td>Missing</td>
<td>129 (6)</td>
<td>85 (5)</td>
<td>43 (9)</td>
</tr>
<tr>
<td>Employment status, N (%)</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1109 (53)</td>
<td>842 (52)</td>
<td>267 (57)</td>
</tr>
<tr>
<td>Retired</td>
<td>469 (23)</td>
<td>412 (26)</td>
<td>57 (12)</td>
</tr>
<tr>
<td>No</td>
<td>368 (18)</td>
<td>269 (17)</td>
<td>99 (21)</td>
</tr>
<tr>
<td>Missing</td>
<td>129 (6)</td>
<td>85 (5)</td>
<td>43 (9)</td>
</tr>
<tr>
<td>ASA preinjury health status,§§ N (%)</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Healthy</td>
<td>1223 (59)</td>
<td>917 (57)</td>
<td>307 (66)</td>
</tr>
<tr>
<td>Mild disease</td>
<td>663 (32)</td>
<td>538 (33)</td>
<td>125 (27)</td>
</tr>
<tr>
<td>Severe disease</td>
<td>175 (8)</td>
<td>146 (9)</td>
<td>29 (6)</td>
</tr>
<tr>
<td>Missing</td>
<td>14 (1)</td>
<td>8 (1)</td>
<td>6 (1)</td>
</tr>
<tr>
<td>Preinjury substance abuse*</td>
<td></td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>45 (2)</td>
<td>27 (2)</td>
<td>18 (4)</td>
</tr>
<tr>
<td>Missing</td>
<td>19 (1)</td>
<td>8 (1)</td>
<td>11 (2)</td>
</tr>
<tr>
<td>Pre-injury mental health problems, ** N (%)</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>205 (10)</td>
<td>169 (11)</td>
<td>36 (8)</td>
</tr>
<tr>
<td>Missing</td>
<td>23 (1)</td>
<td>8 (1)</td>
<td>11 (2)</td>
</tr>
<tr>
<td>Injury characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cause of injury, N (%)</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Road traffic incident</td>
<td>851 (41)</td>
<td>618 (38)</td>
<td>233 (50)</td>
</tr>
<tr>
<td>Incidental fall</td>
<td>908 (44)</td>
<td>751 (47)</td>
<td>157 (34)</td>
</tr>
<tr>
<td>Other non-intentional injury</td>
<td>174 (8)</td>
<td>136 (8)</td>
<td>38 (8)</td>
</tr>
<tr>
<td>Violence/assaults</td>
<td>104 (5)</td>
<td>79 (5)</td>
<td>25 (5)</td>
</tr>
<tr>
<td>Missing</td>
<td>38 (2)</td>
<td>25 (2)</td>
<td>13 (3)</td>
</tr>
<tr>
<td>Major extracranial injury,†† N (%)</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>744 (35)</td>
<td>450 (28)</td>
<td>269 (58)</td>
</tr>
<tr>
<td>ISS</td>
<td>13 (8–25)</td>
<td>10 (5–18)</td>
<td>29 (25–41)</td>
</tr>
<tr>
<td>Any intracranial abnormality,† † N (%)</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>863 (42)</td>
<td>711 (44)</td>
<td>385 (83)</td>
</tr>
<tr>
<td>Missing</td>
<td>116 (6)</td>
<td>80 (5)</td>
<td>36 (8)</td>
</tr>
</tbody>
</table>

All patients include patients who left TBI registry, further analysis is limited to patients who completed the GOSE and SF-12 v2 or QOLIBRI-Os 6 months post-injury.

†Mild TBI: GCS 3–15.

‡Moderate and severe TBI: GCS 3–12.

§§ASA: American Society of Anesthesiologists.

*Preinjury substance abuse: alcohol, tobacco or other illicit drugs.

**Pre-injury mental health problems: anxiety, depression, bipolar disorder, personality disorder, psychosis.

††Major extracranial injury: fracture of the skull, encephalomalacia, subdural haematoma, epidural haematoma.

ISS: Injury Severity Score.
DISCORDANCE BETWEEN DISABILITY AND HEALTH-RELATED QUALITY OF LIFE: THE ‘DISABILITY PARADOX’

Similar to the trends depicted in figure 1, a higher percentage of patients following mild TBI with upper severe disability (GOSE 5) reported HRQoL scores within the normative range than patients with lower moderate disability (GOSE 4) (MCS 50% vs 30%; QOLIBRI-OS 42% vs 35%) (table 3).

Following mild TBI, up to half of the individuals with severe disability (N=93) had normative QOLIBRI-OS and MCS scores 6 months following TBI (QOLIBRI-OS 29% and 42%, MCS 40% and 50%) (table 3). In contrast, a smaller proportion of individuals with severe disabilities had normative PCS scores (11% and 24%). Following moderate and severe TBI, more than a third of individuals with severe disability (N=88) had normative QOLIBRI-OS and MCS scores 6 months following TBI (QOLIBRI-OS 40% and 37%; MCS 26% and 13%) (table 3).

Second, we calculated the difference between the PCS and the MCS by recovery level on the GOSE. Patients with severe disability had larger mean differences between the MCS and PCS compared with patients with moderate disability and good recovery (table 3). The difference for patients with severe disability was nearly 10 points, which is equivalent to one SD at the population level. This implies that severely disabled individuals have a substantial discordance between the PCS and MCS.

THE RELATION BETWEEN DISABILITY, CONTEXTUAL FACTORS AND HRQoL

The GOSE had the largest contribution to explaining the variance of HRQoL compared with personal, injury-related and environment factors (figure 2).

While adjusting for personal, injury-related and environment factors in patients with mild TBI, estimates of the MCS and QOLIBRI-OS for patients with GOSE 5 were lower than estimates for patients with GOSE 3–4 (figure 3). Thus, personal and injury-related factors (including MEI) and satisfaction with social support did not explain the discrepancies between GOSE and HRQoL in patients following mild TBI.

Besides the GOSE, satisfaction with social support 6 months following TBI contributed to explaining the variance in HRQoL (figure 2). Independent of initial injury severity based on GCS, patients with lower moderate disabilities (GOSE 5) were least satisfied with the support they received from rehabilitation (67%) vs ≥70% for mild and 75% vs ≥79% for moderate and severe TBI) (online supplemental table 5). As expected, patients with moderate disability (GOSE 5–6) were less likely than patients with severe disability (GOSE 3–4) to receive rehabilitation 6 months following TBI. This suggests that rehabilitation is underutilized for patients with moderate disability (GOSE 5–6).

The discordance between the PCS and the MCS by recovery level on the GOSE suggests that severe disability had larger mean differences between the MCS and PCS compared with patients with moderate disability and good recovery (table 3). The difference for patients with severe disability was nearly 10 points, which is equivalent to one SD at the population level. This implies that severely disabled individuals have a substantial discordance between the PCS and MCS.
months post-injury (54%–62% vs <51% for mild TBI, respectively; 9%–19% vs <5% for moderate/severe TBI respectively) (online supplemental table 6).

Up to 29% (mild) and 28% (moderate and severe) of the variance in QOLIBRI-OS and 21% (mild) and 11% (moderate and severe) of the variance in MCS were explained by the combination of GOSE, personal and injury related characteristics and satisfaction with social support at 6 months post-injury.

DISCUSSION

We examined the relationship between disability assessed with the GOSE and HRQoL measured with the SF12v2 MCS and QOLIBRI-OS 6 months following TBI in the CENTER-TBI study. Following mild TBI, patients can have poor functional outcomes, which is consistent with growing awareness that patients classified as mild by GCS criteria can suffer a range of problems.3 In patients following mild TBI, HRQoL did not decrease linearly with greater disability. Specifically, patients with severe disability on the GOSE reported higher MCS and QOLIBRI-OS scores than patients with moderate disabilities. Furthermore, between a third and half of patients with severe disabilities reported HRQoL within the normative range. Our study therefore confirms that individuals’ perceptions of aspects of well-being and mental health are often discordant with their objective functioning following TBI.

Our findings are consistent with prior studies describing good or excellent well-being and quality of life following TBI.13 34 Furthermore, our findings imply that satisfactory HRQoL in patients with disabilities is not a ‘paradox’, since individuals frequently report HRQoL within the normative range following TBI. Discordance between disability and HRQoL should therefore be regarded as a characteristic of TBI outcomes. Characterising HRQoL within the normative range despite severe disability as a ‘paradox’ has serious shortcomings, as it implies that patients with severe disability cannot normally experience satisfactory HRQoL.13 Discrepancies between disability and HRQoL have been observed in prior studies in TBI.35–37 To provide quantification of the discordance between physical and mental health, we therefore examined the difference between the SF-12v2 MCS and PCS. Similarly, patients with severe disabilities had the largest discordance between the MCS and PCS.
It is often suggested that patients with severe disability after TBI have lower self-awareness or anosognosia and a bias towards responding positively on outcome assessments. This might explain, for example, positive ratings on the QOLIBRI-OS among more disabled individuals. Although impairments of self-awareness can be present after TBI, Sasse et al. found that the influence on reported HRQoL was weak. Furthermore, in our study, patients showed awareness of functional limitations on the PCS and nonetheless gave positive ratings of HRQoL on the MCS. The dissociation observed for two summary components of the same self-reported outcome appears to rule out an account in terms of global lack of awareness. That is, the discrepancy means that patients were not simply responding with positive ratings across all items, in a way that one might expect if the person had profound loss of awareness, and would imply that the responses were meaningless. Nonetheless, more selective limitations of awareness may play a role, for example, lack of awareness of cognitive impairment or mental health problems. Alterations in awareness may thus contribute to discrepancies, and this deserves further study.

Besides deficits in general functional outcome cognitive impairments are likely to play a role in perception of well-being after TBI. A prior CENTER-TBI study found that MCS scores generally decreased with increasing cognitive impairment and apparently reached a plateau in the severely disabled group. Cognition may play a number of different roles, and it is possible that cognitive impairment has some protective role in the most severely disabled patients. Data on cognitive impairments from severely disabled patients (GOSE 3–4) were too limited to allow us to examine this issue, and it remains an important topic for future research. Furthermore, prevalence of cognitive impairment is likely to be a key difference between the two severity groups that we studied. Notably, discrepancies were observed in both groups and were not more pronounced in more severely injured patients than the group with mild injuries.

Following TBI, disability is often assessed using functional outcome scales such as the GOSE. The SF-12v2 and QOLIBRI-OS also try to capture the patient’s subjective experience of their well-being in daily life. Decisions about the management of TBI are sometimes founded on the likelihood of the person remaining dependent, under the assumption this will lead to impaired HRQoL, and therefore classified as an ‘unfavorable’ outcome. In contrast, our findings showed that HRQoL does not simply follow functioning. Our results thus represent a strong caution against adopting a negative view of potential HRQoL and well-being in patients who are severely disabled based on the GOSE.

We found the lowest levels of HRQoL in patients with moderate disability. Similarly, in a study of patients after severe TBI, Mailhan and colleagues found the lowest level of life satisfaction in patients with moderate disability, which they attribute to lower satisfaction in the domains social and family life. Our results also indicated that patients with moderate disability might be less satisfied with their social support and were less likely to receive rehabilitation. As expected, access to rehabilitation services is more likely among patients following moderate and severe TBI and patients with severe disability compared with their respectively less severely injured and disabled counterparts. A previous study showed that patients after less severe TBI report more unmet rehabilitation needs than those following severe TBI. Patients with moderate disability are independent, but are unable to return to work, and experience activity limitations, the injury and its consequences might be less visible to their environment compared with patients with severe disability, which could result in less (social) support. To be unable to work and be isolated in the community, may well be worse for well-being than being dependent in daily life but well-supported by others. Our results thus suggest that patients with lower moderate disability living in the community should be a particular target for additional support, rehabilitation and interventions. Furthermore, as perceptions of well-being are often discordant with disability level following TBI, recovery should be based on a multidimensional outcome measure including disability on multiple domains including physical, cognitive and social disabilities and HRQoL.

The disability ‘paradox’ has more than once been described as good well-being ‘against all odds’, implying that physical disabilities are the main driver of well-being. However, we found that personal, injury-related and environment factors explain a proportion of HRQoL outcomes beyond functional outcome. Nevertheless, only up to 29% of the variance in QOLIBRI-OS and 21% of the variance in MCS was explained by GOSE, personal and injury-related characteristics and satisfaction with social support. Furthermore, personal, injury-related and environment factors did not explain the discrepancies between the GOSE and HRQoL in patients following mild TBI. Injury-related factors included MEI, which is known to have a dominant effect on outcome after mild TBI. As the majority of variance remained unexplained, future research should consider the effect of coping, resilience, adaptation and cognitive impairments on HRQoL following TBI. To further explain HRQoL in patients following TBI, it is crucial to involve patients and their relatives. The focus on mixed methods research, combining quantitative and qualitative methods, might help to elucidate patients’ perceptions of satisfactory quality of life following TBI.
Strengths
The strengths of this study include the use of data from a large international, multicentre observational study. Consequently, we made use of a standardised collection of data and a well described and contemporary cohort of patients. Furthermore, the CENTER-TBI study enrolled patients following mild, moderate and severe TBI, which enabled us to compare HRQoL outcomes by injury severity. Moreover, to describe HRQoL following TBI, we used generic (SF-12v2) and disease-specific (QOLIBRI-Os) instruments. The combination of generic and disease-specific instruments has been recommended to more fully capture patients’ HRQoL following TBI.7 Furthermore, we demonstrated the dissociation between physical and mental HRQoL using two scales from the same instrument, arguing against the idea that the discordance results from compromised self-awareness following TBI.12 13

Limitations
Several limitations of our study have to be considered. Patients with lower functional outcome on the GOSE and lower HRQoL were less likely to complete the questionnaires, potentially resulting in a response bias. Furthermore, the SF-12v2 is not suitable for patients with major cognitive impairment or language difficulties. Thus, the most severely disabled patients, who are likely to be among the most distressed, are not represented in the data. Taken together, the results of our study can only be generalised to patients who are able to respond to follow-up questionnaires, implying that our findings will not apply to a subgroup of

Figure 2 Contribution of predictors to explained variance (partial R^2) of the models for SF-12 PCS (left), SF-12 MCS (middle) and QOLIBRI-Os (right).

The partial R^2 is calculated as follows: total R^2 of multivariable model − R^2 multivariable model without individual predictor: total R^2 of multivariable model without individual predictor−partial R^2. MCS, mental component summary; PCS, physical component summary; QOLIBRI-Os, Quality of Life after Traumatic Brain Injury overall scale.
patients with profound disability, severe neurological problems, or language difficulties.

CONCLUSION
Our study confirms that patients’ perceptions of HRQoL are often discordant with level of disability following TBI. Contrary to the idea that discrepancies are unusual, many patients with poor functional outcomes report satisfactory well-being, particularly in patients after mild injury. These results indicate that the effects of ‘mild’ TBI can be extensive and warrant further investigation. Furthermore, the findings challenge the idea that good quality of life in patients with disability should be described as ‘paradoxical’ and question common views of what constitutes ‘unfavourable’ outcome.

Acknowledgements
We are grateful to all patients and investigators who participated in the CENTER-TBI study.

Figure 3 Adjusted association between the GOSE and the SF-12 MCS (upper) and QOLIBRI-OS (lower) for the ‘average’ patient (sex=male; age=51; marital status=married; highest level of education=second/high school; type of employment=working; preinjury mental health problems=no; preinjury substance abuse=no; preinjury health status (ASA-PS)=healthy; injury severity (GCS)=15; cause of injury=incidental fall; major extracranial injury=no; presence of intracranial traumatic abnormalities=present; satisfaction with social support=high; satisfaction with support from the hospital and health services=high; satisfaction with support from rehabilitation services=high). ASA-PS, The American Society of Anesthesiologists-physical status classification system; GOSE, Glasgow Outcome Scale-Extended; MCS, mental component summary; PCS, physical component summary; QOLIBRI-OS, Quality of Life after Traumatic Brain Injury overall scale; TBI, traumatic brain injury.

Author affiliations
1Department of Public Health, Center for Medical Decision Making, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
2Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies/Tufts Medical Center, Boston, Massachusetts, USA
3Research Centre for Habilitation and Rehabilitation Models and Services (CHARM), Department of Health and Society, University of Oslo, Oslo, Norway
4Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
5Department of Neurosurgery, University Hospital Antwerp, Edegem, Antwerp, Belgium
6Division of Anaesthesia, Cambridge University, Cambridge, UK
7Department of Public Health, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
8Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
9Department of Intensive Care, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
10Division of Psychology, University of Stirling, Stirling, UK
Peter Vajkoczy (Neurologie, Neurochirurgie und Psychiatrie, Charité—Universitätsmedizin Berlin, Berlin, Germany), Shirley Vallance (ANZIC Research Centre, Monash University, Department of Epidemiology and Preventive Medicine, Melbourne, Victoria, Australia), Egils Valeins (Neurosurgery clinic, Pauls Stradins Clinical University Hospital, Riga, Latvia), Zoltán Vámos (Department of Anaesthesiology and Intensive Therapy, University of Pécs, Pécs, Hungary), Mathieu van der Jagt (Department of Intensive Care Adults, Erasmus MC—University Medical Center Rotterdam, Rotterdam, the Netherlands), Gregory Van der Steen (Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium), Joke van der Naalt (Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands), Jeroen T J M van Dijk (Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands), and Department of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands), Thomas A van Essen (Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands and Department of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands), Wim Van Hecke (icometrix NV, Leuven, Belgium), Caroline van Heugten (Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK), Dominique Van Praag (Psychology Department, Antwerp University Hospital, Edegem, Belgium), Thijs Vande Vyvere (icometrix NV, Leuven, Belgium), Roel P J van Wijk (Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands and Department of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands), Alessia Vargiolu (NeuroIntensive Care, ASST di Monza, Monza, Italy), Emmanuel Vega (Department of Anesthesiology-Intensive Care, Lille University Hospital, Lille, France), Kimberly Velt (Department of Public Health, Erasmus Medical Center-University Medical Center, Rotterdam, The Netherlands), Jan Verheyden (icometrix NV, Lommel, Belgium), Paul M Weerdesteyn (Department of Neurology, University of California, Los Angeles, USA), Anne Vik (Department of Neurosurgery and Movement Science, Norwegian University of Science and Technology, NTNU, Trondheim, Norway), Department of Neurosurgery, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway), Rimanitas Vilcins (Department of Neurosurgery, Kaunas University of Health Sciences, Kaunas, Lithuania), Victoria Volfsovic (Department of Neurosurgery, Erasmus MC, Rotterdam, the Netherlands), Nicole von Steinbüchel (Institute of Medical Psychology and Medical Sociology, Universität zu Berlin, Berlin, Germany), Daphne Voornomen (Department of Public Health, Erasmus Medical Center-University Medical Center, Rotterdam, The Netherlands), Petar Vulekovic (Department of Neurosurgery, Clinical centre of Vojvodina, Faculty of Medicine, University of Novi Sad, (Novi Sad, Serbia), Kevin W Wang (Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA), Eveline Wiggers (Department of Public Health, Erasmus Medical Center-University Medical Center, Rotterdam, The Netherlands), Guy Williams (Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK), Lindsay Wilson (Division of Psychology, University of Stirling, Stirling, UK), Stefan Winzeck (Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK), Stefan Wolf (Department of Neurosurgery, Charité—Universitätsmedizin Berlin, corporate member of Free Universitatsärzte Berlin-Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany), Zhihui Yang (Broad Institute, Cambridge MA Harvard Medical School, Boston, MA), Peter Ylen (VTT Technical Research Centre, Tampere, Finland), Alexander Yusnitski (Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany), Frederick A Zeller (Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK), Section of Neurosurgery, Department of Movement and Science, University of Minnesota, Winnipeg, MB, Canada), Veronika Zelinkova (Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia), Agate Ziverte (Neurosurgery clinic, Pauls Stradins Clinical University Hospital, Riga, Latvia), Tommaso Zoerle (Neuro ICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy).

Contributors IRARR and LW contributed the original idea for the manuscript. LW supervised the project. DvK advised on statistical analysis. IRARR took the lead in writing the manuscript. All authors contributed to interpretation of the data, provided feedback on earlier drafts and approved the final manuscript. IRARR was responsible for the overall content of the manuscript. IRARR and LW had final responsibility for the decision to publish.

Funding The research leading to these results was supported by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 602 150 (CENTER-TBI). Additional funding was obtained from the Hannelore Kohl Stiftung (Germany), from OneMind (USA) and from Integra LifeSciences Corporation (USA).

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval The CENTER-TBI study (EC grant 602150) has been conducted in accordance with all relevant laws of the EU if directly applicable or of direct effect and all relevant laws of the country where the Recruiting sites were located, including but not limited to, the relevant privacy and data protection laws and regulations (the ‘Privacy Law’), the relevant laws and regulations on the use of human materials, and all relevant guidance relating to clinical studies from time to time in force including, but not limited to, the ICH Harmonised Tripartite Guideline for Good Clinical Practice (CPMP/ICH/135/95) (“ICH GCP”) and the World Medical Association Declaration of Helsinki entitled ‘Ethical Principles for Medical Research Involving Human Subjects’. Informed Consent by the patients and/or the legal representative(s) and/or in writing in case of incapacity (i.e. children). IRARR for all patients recruited in the Core Dataset of CENTER-TBI and documented in the e-CRF. Ethical approval was obtained for each recruiting site. The list of sites, Ethical Committees, approval numbers and approval dates can be found on the website: https://www.center-tbi.eu/project/ethical-approval. Name of the Ethics Committees and Number of approval. Ethikkommission der Medizinischen Universität Wien (16/462014); Ethikkommission der Medizinischen Universität Innsbruck (AN2014-0336.343/4.22); Centraal Ethisch Comité—Ethisch Comité Ziekenhuis Antwerpen en de Universiteit Antwerpen (B302001422714); Centraal Ethisch Comité—Ethisch Comité Universitair Ziekenhuis Antwerpen en de Universiteit Antwerpen (B302001422714 17-NOV-2014); Comité d’Ethique (412 1427); Centraal Ethisch Comité—Ethisch Comité Universitair Ziekenhuis Antwerpen en de Universiteit Antwerpen (B302001422714); Commissie Medische Ethiek UZ KU Leuven/Onderzoeker (B322201523981/575019 (ML11365)); De Videnskabsskabets Komité for Region Syddanmark (S-20140215); De Videnskabsskabets Komité for Region Syddanmark (S-20150215); Vaskins suomen sairaanhoitopiirin kuntayhtymä—Ettinen Toimikunta (PSI/1801/2014); Vaskins suomen sairaanhoitopiirin kuntayhtymä—Ettinen Toimikunta (PSI/1801/2014); Helsinki Committee, Rambam Health Care Campus (141421B-31); Agence Nationale de Sécurité du Médicament et des Produits de Santé ANSM (141421B-31); Agence Nationale de Sécurité du Médicament et des Produits de Santé ANSM (141421B-31); Agence Nationale de Sécurité du Médicament et des Produits de Santé ANSM (141421B-31); Agence Nationale de Sécurité du Médicament et des Produits de Santé ANSM (141421B-3); Ethikkommission Medizinische Fakultät Heidelberg (S-435/2014); Ethikkommission an der Medizinische Fakultät‘Derrhein-Westfälischen Technischen Hochschulen Aachen (1098/15); Ethikkommission an der Medizinische Fakultät‘Der rhein-Westfälischen Technischen Hochschulen Aachen (1098/15); Ethikkommission Medizinische Fakultät Heidelberg (S-435/2014); ET TÜKEB Egészsegügy Tudományos Tanács (42558-3/2014/EK); Pécsi Tudományegyetem (31421); ET TÜKEB Egészsegügy Tudományos Tanács (42558-3/2014/EK); Szegedi Tudományegyetem (3803); Helsinki Committee, Rambam Health Care Camps (RMB 373-14); Hadassah Medical Organization IRB (0590-16 HMO); Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico—Direzione Scientifica Comitato Etico (542/2014); Comitato Etico—Ospedale San Raffaele (217/2014); Comitato Etico Interaziendale A.O.U. ‘Maggiore di Genova’ (CE 46/15); Comitato Etico—Ospedale Niguarda Ca’ Granda (636-120215); Ethics Committee for Clinical Research at Paul Stradins Clinical University Hospital Development Society (171215-1E); Ethics Committee for Clinical Research at Pauls Stradins Clinical University Hospital Development Society (171215-1E); Ethics Committee for Clinical Research at Pauls Stradins Clinical University Hospital Development Society (171215-1E); VLINAUS REGIONIS BIOMEDICININIŲ TYRIMŲ ETIKOS KOMITETAS (158200-3/2014); KAUNO REGIONIS BIOMEDICININIŲ TYRIMŲ ETIKOS KOMITETAS (323); VILNIUS REGIONIS BIOMEDICININIŲ TYRIMŲ ETIKOS KOMITETAS (141421B-31); Comité d’Ethique (412 1427); Centraal Ethisch Comité—Ethisch Comité Universitair Ziekenhuis Antwerpen en de Universiteit Antwerpen (B302001422714).
REFERENCES