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a larger case series, additional patterns of 
involvement might be seen. This study did 
not include quantitative MRI techniques 
that are needed for longitudinally respon-
sive outcome measures; however, it is suffi-
cient to describe the type and distribution of 
muscle MRI changes in this patient cohort 
and to inform design of longitudinal quan-
titative studies.

In summary, fat accumulation and atrophy 
in the calf musculature are prominent MRI 
features in patients with SORD neurop-
athy; however, thigh muscle involvement 
and STIR hyperintensity were also seen in 
all patients in this study. Larger prospec-
tive longitudinal quantitative muscle MRI 
studies of patients with SORD neuropathy, 
including standardised evaluations, will 
be needed to further define its role as an 
outcome measure in this potentially treat-
able neuropathy.
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Plasma GFAP in 
presymptomatic and 
symptomatic familial 
Alzheimer’s disease: a 
longitudinal cohort study

INTRODUCTION
Glial fibrillar acidic protein (GFAP), a 
marker of astroglia activation, has been 
proposed as a biomarker of Alzheimer’s 

disease (AD).1 GFAP expression 
correlates with Aβ plaque density and 
cerebrospinal fluid (CSF) concentration 
is elevated in symptomatic disease.1 2 
Ultrasensitive assays that reliably measure 
plasma GFAP show increases in AD that 
are relatively greater than in CSF.1 Auto-
somal dominantly inherited familial AD 
(FAD) is a valuable model for character-
ising presymptomatic AD as mutations 
are highly penetrant and it has a young, 
reasonably predictable, age of onset.3 
We examined whether plasma GFAP 
concentration is altered in mutation 
carriers compared with non- carriers, and 
the timing of presymptomatic change.

METHODS
We studied 69 participants within 
University College London’s longitu-
dinal study of FAD between 2010 and 
2019; described previously.3 Eligibility 
was either (1) a clinical diagnosis of FAD 
or (2) an FAD- affected parent, which 
means a 50% risk of inheriting a muta-
tion and thereby of developing symp-
toms at a similar age to their affected 
parent.

FAD mutation status was determined 
using Sanger sequencing; participants 
and study clinicians were blinded to 
results. At each study visit, EDTA blood 
sampling and a participant and infor-
mant interview were conducted. Plasma 
samples were shipped frozen to Sahl-
grenska University Hospital for blinded 
analysis using the GFAP single molecule 
array discovery kit (#102336) on an 
HD- X platform (Quanterix). Estimated 
years to/from symptom onset (EYO) 
was calculated by subtracting the age at 
which the participant’s affected parent 
first developed progressive cognitive 
symptoms from the participant’s age at 
blood sampling.

Baseline statistics and box plots of 
GFAP concentrations were produced 
for each participant group (symptom-
atic mutation carriers; presymptomatic 
carriers; non- carriers). Other analyses 
used data from all visits. GFAP was 
log- transformed, with estimated coeffi-
cients back- transformed and expressed 
as multiplicative effects and geometric 
means. In non- carriers we assessed the 
association between GFAP and sex. Age- 
adjusted and sex- adjusted (1) differences 
in GFAP between patient groups and (2) 
relationship between GFAP and EYO 
were both modelled using mixed effects 
models. We estimated the age- adjusted 
and sex- adjusted difference in geometric 
mean GFAP between carriers and 
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Figure 1 (A) Box plot for observed baseline plasma GFAP concentration. The measured plasma GFAP 
concentrations at baseline (first visit) are shown. Mutation carriers have been divided into those who 
are symptomatic (SMC) and those who are presymptomatic (PMC). The estimated geometric mean 
GFAP concentration in symptomatic carriers was 238% higher (95% CI 141% to 374%, p<0.001) than 
in non- carriers, and in presymptomatic carriers was 95% higher (95% CI 46% to 159%, p<0.001) 
than in non- carriers, after adjusting for age and sex. Age- and sex- adjusted geometric mean GFAP 
concentration was also significantly elevated in symptomatic compared with presymptomatic carriers 
(73% higher, 95% CI 26% to 138%, p=0.001). Boxes show the median and first and third quartiles. 
Dots represent individual observations. (B) Observed plasma GFAP concentration against estimated 
years to/from symptom onset. Symptomatic mutation carriers are shown in red, presymptomatic 
mutation carriers are shown in blue, non- carriers are shown in black. To preserve blinding to genetic 
status, all observed values for timepoints more than 19.3 years before expected symptom onset are 
shown in grey and some timepoints have been removed for at risk individuals. (C) Trajectory of plasma 
GFAP against estimated years to/from onset. Modelled geometric mean plasma against estimated 
years to/from symptom onset. Mutation carriers represented in red; non- carriers in black. Estimates are 
shown for a hypothetical male aged 41 years (the mean age at baseline). Dotted lines indicate 95% 
CIs. The y- axis scale is logarithmic in all panes. GFAP, glial fibrillar acidic protein.

non- carriers for integer values of EYO 
between –30 and 20. The point when 
this estimate was statistically signifi-
cantly different from zero (p≤0.05) was 
interpreted cautiously as an indication of 
when the estimated trajectory of GFAP 
for carriers diverged from non- carriers. 
A sensitivity analysis refitted all models 
omitting participants (one symptomatic 
mutation carrier, one non- carrier) with 
high outlier GFAP values.

Further details on study procedures 
and analyses are provided in online 
supplemental material.

RESULTS
Online supplemental table 1 shows 
baseline characteristics. Fifty partici-
pants were asymptomatic (23 mutation 
carriers 27 non- carrier controls). Base-
line and longitudinal observed GFAP 
data are shown in figure 1A,B. Within 
non- carriers, estimated geometric mean 
plasma GFAP was higher in females 
compared with males (54% higher, 
95% CI 2% to 133%, p=0.039), with no 
meaningful difference after omitting the 
outlier. After adjusting for age at visit 
and sex, geometric mean GFAP concen-
trations were estimated to be higher in 
both symptomatic and presymptomatic 
carriers compared with non- carriers 
(p<0.001 for both comparisons). 
These results remained significant 
after removing the two outliers (online 
supplemental figure 1). The age- and sex- 
adjusted geometric mean GFAP concen-
tration in carriers was first significantly 
higher (p=0.04) than in non- carriers at 
EYO of 16 years (figure 1C).

DISCUSSION
This study found plasma GFAP was 
increased in both presymptomatic and 
symptomatic mutation carriers compared 
with non- carriers, and in symptomatic 
compared with presymptomatic carriers. 
Plasma GFAP levels diverged between 
carriers and non- carriers around 16 
years before estimated symptom onset. 
This is consistent with recent findings 
of higher plasma GFAP in amyloid- 
positive versus amyloid- negative cogni-
tively normal older adults and with 
GFAP increases being associated with 
subsequent decline in global cognition, 
amyloid accumulation and conversion 
to dementia.1 2 4 Overall these results 
support plasma GFAP being a biomarker 
of early AD pathology.

The timing of GFAP change is 
consistent with a response to amyloid, 

supporting previous findings that plasma 
GFAP is associated with amyloid burden 
and p- tau181 levels.1 2 Additionally, 
plasma levels partially mediate the asso-
ciation between amyloid burden and tau 
positron emission tomography (PET) 
signal, and are not increased in amyloid 
negative, tau positive individuals or in 
dementia with Lewy bodies and fronto-
temporal dementia.1 2 This suggests that 
plasma GFAP is a marker of amyloid- 
related astrogliosis. However, plasma 
GFAP may also be an indicator of 
blood–brain barrier and/or glymphatic 
dysfunction—astrocytes form part of 
the neurovascular unit and may directly 
release GFAP into blood, perhaps 
explaining the greater magnitude of 
increases in plasma versus CSF GFAP, 
and the lack of association between 
plasma GFAP and other CSF inflamma-
tory markers.1 2 5

Symptomatic carriers, on average, had 
geometric mean plasma GFAP concen-
trations greater than three times that 
of non- carriers, with presymptomatic 
carriers having a mean concentration 
twice that of non- carriers, approaching 
midway between symptomatic and 
non- carrier groups. These are remark-
able differences given this is a blood- 
based assay. Nonetheless, the overlap 
between groups, the outliers and the 
within- individual variability suggests 
that plasma GFAP may be most useful 
in combination with other AD blood 
biomarkers. This is consistent with 

recent studies in sporadic AD showing 
higher diagnostic yield for detecting 
underlying amyloid/AD pathology when 
GFAP was used in combination with 
other plasma markers.1

Plasma GFAP demonstrated consid-
erable intraindividual and interindi-
vidual variability; fluctuations in plasma 
concentrations of NfL and p- tau181 
have previously been shown in the same 
cohort.3 It is unlikely that AD- related 
processes are solely responsible for these 
fluctuations as variability occurred in 
carrier and non- carrier groups. Vari-
ability in plasma levels may be partly 
attributable to responses to nonspecific 
CNS injury, with increases previously 
being reported in traumatic brain injury, 
stroke, epilepsy and COVID- 19- related 
delirium.5

Our study has limitations. The 
sample size, due to the rarity of FAD, 
was relatively small. Additionally, we 
used parental age at symptom onset to 
estimate timing of future symptomatic 
decline. This provides a reasonable esti-
mate of future age at onset, but it is not 
without error due to variability in age at 
onset. Further, prospective studies are 
needed to assess diagnostic accuracy and 
investigate sources of variability.

CONCLUSION
Plasma GFAP concentration in FAD 
increases presymptomatically, with 
changes being detected over a decade 
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prior to estimated symptom onset, 
supporting its further investigation as 
an accessible biomarker of AD- related 
astroglial activation.
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