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and/or sequential alterations in brain function and structure. 
For example, brain structural alterations preceding functional 
changes have been implicated cross-sectionally in major depres-
sive disorder,32 in Parkinson’s disease with no cognitive impair-
ment,33 and longitudinally in multiple sclerosis.34 In contrast, 
functional alterations have been shown to precede structural 
changes in Alzheimer’s disease.35 In patients with idiopathic 
Parkinson’s disease, differential atrophy patterns in hippocampal 
subfields have been reported to precede their phenotypic diag-
nostic conversion to Parkinson’s disease dementia,36 suggesting 
that structural changes occur before impairment of clinically 
defined cognitive functioning. In this study, no such evidence of 
sequential structure–function decoupling was observed.

Instead, we observed neurochemical-functional decoupling in 
relation to UMN impairment. To our best knowledge, there is 
no fMRI evidence of neurochemical–functional decoupling in 
neurodegenerative disorders in humans. Of the three imaging 
measures investigated (FC, FA and tNAA/Cr), FA and tNAA/
Cr levels were found to correlate strongly with clinical UMN 
impairment, but not FC. Furthermore, the relationship between 
FC reductions and tNAA/Cr concentrations, but not of FC 
reductions and WM FA, could suggest that in terms of imaging 

identifiers of clinical impairment, alterations in neurochem-
ical properties of the PMC might be an earlier occurrence in 
ALS pathophysiology and be more sensitive towards probing 
the functional underpinnings of ALS. The present work also 
observed changes in the underlying brain tissue microstructure 
which correlated with clinical impairment. However, the lack 
of associations between these microstructural changes and FC 
alterations suggests that neurochemical changes might even 
precede structural changes and translate to alterations in brain 
function and clinical outcomes. However, such chronology of 
cerebral changes cannot be confidently inferred through a cross-
sectional study, presenting the need to perform a longitudinal 
characterisation of cerebral changes.

The present study benefits from a harmonised and multi-
modal MRI acquisition protocol across different ALS popu-
lations in Canada. This enables us to study different patient 
cohorts with varying clinical phenotypes of disease pathology 
across a multicentre cohort. This can provide a better under-
standing of the core neuronal processes that underlie cortical 
dysfunction in ALS. Additionally, harmonised imaging proto-
cols can help reduce MRI system-related variance and increase 
statistical power.37 Another advantage of the present study is a 

Figure 3  Correlations between foot tapping frequency and (A) white matter (WM) fractional anisotropy and (B) total N-acetyl aspartate (tNAA)/creatine 
(Cr) metabolite ratios.

Figure 4  Regional associations of reduced functional connectivity with primary motor cortex neurochemistry. A, anterior; Cr, creatine; L, left; P, posterior, R, 
right; tNAA, total N-acetyl aspartate moieties.
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localised, hypothesis-driven approach to uncover the diffusion 
and neurochemical signatures of altered function. This lowers 
the possibility of interpreting ALS disease pathology incorrectly 
by eliminating erroneous observations.

Heterogeneity of ALS, in terms of its clinical presentation 
and the underlying neurobiology, poses a challenge for scien-
tific study of this complex disorder. Different genetic variants 
correlate with different clinical presentations of ALS.38 A limita-
tion of the current study is that genetic information was not 
available for all patients. However, the present study controlled 
for heterogeneity to some extent by including patients who had 
a symptom duration of no more than 5 years38 and who did 
not previously receive a diagnosis of other neurological condi-
tions such as FTD. Approximately 50% of patients presenting 
to a clinic with an El Escorial designation of suspected ALS can 
present with varying cognitive and behavioural impairments.39 
Notably, there was no control for cognitive impairment as, even 
in patients presenting primarily with motor symptoms, brain 
regions outside the motor network could be affected.40 Another 
limitation of this study could be the lack of control for the poten-
tial pharmacodynamic impact of Riluzole therapy, a glutamate 
agonist, on in vivo imaging features. Previously, Riluzole therapy 
has been shown to prolong survival41 and in a small cohort 
to improve the concentrations of NAA after approximately 3 
weeks of treatment42; however, the long-term effects on NAA 
are unknown.

In conclusion, this study has shown that reduced FC of 
the motor cortex in ALS is linked to the local concentrations 
of NAA. This highlights the importance of assessment of in 
vivo neurochemistry as an early pathophysiological marker of 
PMC functional changes in the characterisation of ALS disease 
pathology. Based on the findings from this study, it could be 
helpful to include MRS of NAA moieties within the PMC in 
relevant research protocols and in the investigation of patients 
with suspected ALS. However, we recognise that MRS can be 
more logistically challenging in a clinical setting because of 
the technical expertise required by the MRI system operator 
to accurately prescribe the MRS voxel. Future research studies 
could explore the functional, neurochemical and structural 
dynamics of the PMC, longitudinally and also in relation to 
Riluzole therapy. Such studies could aim to explore in greater 
depth neurochemical contributions to functional impairment 
and cortical excitability, for example, with the use of MRS to 
quantify levels of excitatory and inhibitory neurotransmitters, 
as well as techniques such as transcranial magnetic stimulation 
and positron emission tomography to quantify cortical motor 
neuron excitation and glucose metabolism, respectively.
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Table 4  Regional associations of reduced functional connectivity with primary motor cortex neurochemistry and FA

Group comparison
Brain region
(Brodmann area) Brodmann area Type of association T -value

Associations between reduced FC and tNAA/Cr ratios

ALS<HC L primary sensory cortex BA 1 Positive 5.09

R primary motor cortex BA 4 4.55

B premotor+supplementary motor area BA 6 4.44

R putamen – 4.10

R temporal pole – 3.82

ALS<HC R inferior frontal gyrus BA 47 Negative −4.12

Associations between reduced FC and WM FA—no suprathreshold clusters

T values and coordinates in MNI standard space are reported (T; x, y, z).
ALS, amyotrophic lateral sclerosis; B, bilateral; Cr, creatine; FA, fractional anisotropy; FC, functional connectivity; L, left; R, right; tNAA, total N-acetyl aspartate moieties.
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