Supplemental material

Alzheimer's disease marker phospho-tau181 is not elevated in the first year after moderate-severe TBI

3

Neil S.N. Graham^{1,2,3}, Karl A. Zimmerman^{1,2,3}, Amanda Heslegrave^{4,5}, Ashvini Keshavan⁶,
Federico Moro^{7,8}, Samia Abed Maillard⁹, Adriano Bernini¹⁰, Vincent Dunet¹¹, Elena
Garbero¹², Giovanni Nattino¹², Arturo Chieregato¹³, Enrico Fainardi¹⁴, Camelia Baciu¹³,
Primoz Gradisek¹⁵, Sandra Magnoni¹⁶, Mauro Oddo^{9,17}, Guido Bertolini¹², Jonathan M
Schott^{4,5,6}, Henrik Zetterberg^{4,5,18,19,20,21}, David J. Sharp^{*1,2,3}

9 10

11

SUPPLEMENTARY METHODS

12 The BIO-AX-TBI cohort [1] assessed axonal injury over one year in patients after moderate-13 severe TBI using advanced biomarkers, relating these to clinical outcomes. Patients 14 presenting to major trauma centres at participating study sites were eligible for inclusion if 15 they met the Mayo classification criteria for moderate-severe TBI.[2] These include: acute 16 abnormality on CT (eg. subarachnoid haemorrhage, subdural haematoma, extradural 17 haematoma, intraparenchymal bleed/contusion), injury penetrating the dura, post 18 traumatic amnesia duration > 24 hours, loss of consciousness > 30 minutes, worst Glasgow 19 Coma Scale < 13 or death due to TBI. The presence of any one of these features is sufficient 20 for the patient to meet criteria for moderate-severe injury. Blood was sampled twice within 21 ten days post-injury (first sample mean 2.7 days post-TBI [standard deviation 2.8], second 22 sample 6.3 [2.4] days), between ten days and six weeks (26.0 [2.4] days since injury), at six 23 months (189.0 [16.0] days) and twelve months (371.0 [55.2] days). Plasma was sampled 24 using standard procedures and frozen at -80C. P-tau₁₈₁ was quantified using a single-plex P-25 tau181 V2.0-Advantage kit on a Simoa HD-X (Quanterix, Billerica, MA). UCH-L1, GFAP, total 26 tau and NfL concentrations were previously measured using multiplexed kits (Neurology 4-27 Plex B, Quanterix, Billerica, MA).[3] A 1:4 dilution was used on-board the instrument. 28 Samples were run in duplicate and average values reported. The intraplate coefficient of 29 variation (CV) for p-tau₁₈₁ was 8.4% with an interplate CV of 5.9%.

30 Due to limitations in the Ptau₁₈₁ assay availability and the large number of longitudinal 31 samples in BIO-AX-TBI cohort, we elected analyse a subset of the group where there were 32 samples spanning an entire year, including: an acute blood sample within days 1-10, as well 33 as a chronic sample at six and twelve months post-injury. This equated to n=42 individuals. Healthy control data, comprising p-tau₁₈₁ concentrations from the ADVANCE cohort (50
male service personnel with no history of major trauma) were used for comparison.[4, 5]
The intraplate CV was 8.3% and interplate CV was 8.6%. Data from a separate, pre-existing
group of age-matched healthy controls in BIO-AX-TBI provided norms for previously tested
biomarkers UCH-L1, GFAP, t-tau, NfL, using Neurology 4-plex B kits on a Simoa HD-1.

6 People with Alzheimer's disease (AD) and non-AD controls were assessed at UCL (Study 7 12/3044). Patients had a clinical diagnosis of Alzheimer's type mild cognitive impairment or 8 dementia with CSF showing amyloid pathology (defined by amyloid beta 42:40 ratio \leq 9 0.065). Age-matched controls had subjective cognitive impairment or primary mood 10 disorder and all were amyloid-negative. Analysis was performed with a single-plex P-tau181 11 kit (intraplate CV 1.16%).

The Marshall classification defined acute imaging pathologies. MRI was acquired in 40 of the TBI patients. Pairwise volumetric T1-weighted MRI was analysed as previously [3] using SPM12 (UCL), producing grey/white matter atrophy rates spanning subacute (10 day-6 weeks to 6 months) and early-chronic (6 months to 12 months) periods.

Statistical analyses were conducted using R (v4.1.1). Group differences were assessed using linear regression; longitudinal biomarker assessment within TBI patients was performed using linear mixed effects modelling with subject as a random effect. Due to their nonnormal distribution log-transformed biomarker concentrations were used; age and sex were included as covariates. The relevant research ethics committee approvals were granted for the investigation (UK REC ref: 17/LO/2066, Camberwell and St Giles Ethics Committee).

22

23

24

SUPPLEMENTARY RESULTS

Supplementary Table 1. Demographics and Plasma Biomarker Concentrations

Demographics and plasma concentrations of biomarkers reported for patients and controls. Values for patients after TBI are for the first acute testing timepoint only (ie. the first sample taken within ten days of injury). IQR: interquartile range; NfL: neurofilament light; UCH-L1: ubiquitin c-terminal hydrolase-L1; p-tau₁₈₁:tau phosphorylated at serine 181, T-tau: total tau; GFAP: glial fibrillary acidic protein

		Traumatic brain injury	Ptau181 healthy controls	Other biomarker healthy controls	Alzheimer's disease patients	Non-AD controls
Demographics	n	42	50	128	31	14
	Age (mean (SD))	48.7 (15.7)	45.9 (3.20)	42.1 (16.8)	63.7 (6.48)	60.5 (6.50)
	Sex = Male (%)	32 (76.2)	50 (100.0)	78 (60.9)	15 (48.4)	10 (71.4)
Plasma biomarker concentration (pg/ml), (median [IQR])	P-tau ₁₈₁	1.48 [1.13, 2.85]	1.51 [1.25, 2.11]	-	3.60 [2.66, 4.64]	1.41 [1.25, 1.93]
	T-tau	3.50 [1.66, 6.57]	_	1.20 [0.88, 1.85]	_	_
	NfL	51.3 [22.1, 93.8]	_	5.91 [4.12, 8.72]	-	_
	UCH-L1	37.6 [16.1, 84.5]	_	4.69 [4.69, 10.88]	_	_
	GFAP	3857 [589, 18942]	_	57 [40, 78]	_	_

 IQR: interquartile range; NfL: neurofilament light; UCH-L1: ubiquitin c-terminal hydrolase-L1; p-tau181: tau phosphorylated at serine 181; Ttau: total tau; GFAP: glial fibrillary acidic protein.

	Timepoint following moderate-severe TBI						
	Day 0-10, first sample	Day 0-10, second sample	Subacute, day 10-6 weeks	6 month	12 month		
P-tau ₁₈₁							
n	37	30	42	42	42		
Median	1.5	1.5	1.3	1.4	1.5		
IQR	1.7	1	0.8	0.7	0.5		
T-tau							
n	36	30	42	40	21		
Median	3.5	2.1	2.7	1.3	1.3		
IQR	4.9	2.8	2.3	1	1.1		
NfL							
n	36	30	42	40	21		
Median	51.3	124.7	328.4	24.9	12.2		
IQR	71.7	152.6	445.6	30.9	6.5		
UCH-L1							
n	36	30	42	37	18		
Median	37.6	19.6	18	4.7	4.7		
IQR	68.5	21.1	15.1	6.8	6.8		
GFAP							
n	36	30	42	40	21		
Median	3857	534.5	213.1	71.1	83.8		
IQR	18352.7	1338.5	264.2	76	62.7		

6 7

1		REFERENCES					
2							
3							
4	Additi	Additional references (main manuscript)					
5							
6	Smith, D.H., et al., COllaborative Neuropathology NEtwork Characterizing ouTcomes of TBI						
7	(CONNECT-TBI). Acta Neuropathol Commun, 2021. 9(1): p. 32						
8							
9	Gonzalez-Ortiz, F., et al., Brain-derived tau: a novel blood-based biomarker for Alzheimer's						
10	diseas	<i>e-type neurodegeneration</i> . Brain, 2023. 146 (3): p. 1152-1165					
11							
12		_					
13	Supplementary references						
14							
15							
16	1.	Graham, N.S., et al., <i>Multicentre longitudinal study of fluid and neuroimaging</i>					
17		BIOmarkers of AXonal injury after traumatic brain injury: the BIO-AX-TBI study					
18	2	<i>protocol.</i> BMJ Open, 2020. $10(11)$: p. e042093.					
19	2.	Malec, J.F., et al., The mayo classification system for traumatic brain injury severity.					
20	2	J Neurourauma, 2007. 24(9): p. 1417-24.					
$\frac{21}{22}$	5.	orananii, N.S.N., et al., Axonai marker neurojuameni ligni predicis long-term					
22		Translational Medicine 2021 13 (613): n. eahg0022					
23	4	Bennett A N et al. Study protocol for a prospective longitudinal cohort study					
25		investigating the medical and psychosocial outcomes of UK combat casualties from					
26		the Afghanistan war: the ADVANCE Study, BMJ Open, 2020, 10 (10): p. e037850.					
27	5.	Graham, N.S.N., et al., ADVANCE-TBI study protocol: traumatic brain injury					
28		outcomes in UK military personnel serving in Afghanistan between 2003 and 2014 –					
29		a longitudinal cohort study. BMJ Open, 2023. 13(3): p. e069243.					
30	6.	Smith, D.H., et al., COllaborative Neuropathology NEtwork Characterizing					
31		ouTcomes of TBI (CONNECT-TBI). Acta Neuropathol Commun, 2021. 9(1): p. 32.					
32							