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The habenula: an under-
recognised area of importance
in frontotemporal dementia?

INTRODUCTION
Behavioural variant frontotemporal
dementia (bvFTD) is a neurodegenerative
disorder characterised by atrophy of the
frontal and temporal lobes and progres-
sive behavioural and cognitive impair-
ment. Some behavioural symptoms such
as craving for food, alcohol or drugs, and
hypersexuality are suggestive of abnormal
reward processing. The reward circuit is
formed by a number of different struc-
tures including the orbitofrontal cortex,
ventral striatum (in particular the nucleus
accumbens), ventral pallidum, anterior
cingulate cortex, thalamus, hypothalamus,
midbrain and habenula.1 This complex
network combines information about
motivation, cognitive planning and motor
control to develop an appropriate goal-
directed response to external environmen-
tal stimuli. Many of the brain structures
belonging to the reward circuit have been
found to be atrophic in bvFTD,2 support-
ing the theory that impairment of the
reward system is an important factor in
this disease. Among these structures, the
habenula, found medial to the posterior
thalamus, is uniquely positioned to par-
ticipate in reward processing, acting as a
convergence point for the limbic system
and basal ganglia circuits,3 4 and therefore
playing a pivotal role in the integration of
information required to generate goal-
directed behaviours. Despite this key role,
it has yet to be investigated in bvFTD.

The aim of this study was to investigate
the volume of the habenula in a cohort of
patients with bvFTD, hypothesising that it
would be smaller than in healthy controls
as well as an age-matched group of
patients with Alzheimer’s disease (AD)
who typically do not show impairment of
reward behaviour. We also hypothesised
that the habenula would show comparable
atrophy to other key areas in the reward
network in bvFTD.

METHODS
Fifteen participants fulfilling criteria for
the diagnosis of bvFTD (including eight
with a MAPT mutation and four with a
pathogenic expansion in the C9orf72
gene) were recruited consecutively from a
tertiary referral cognitive disorders clinic
at the National Hospital for Neurology

and Neurosurgery, London, UK. In total,
87% of the group were male with the
mean (SD) age at onset 55.3 (8.9) years
and disease duration 7.3 (3.8) years.
Fifteen participants fulfilling criteria for
typical AD (with early onset disease in
order to match for age) were also
recruited. Only 40% of the group were
male with the mean (SD) age at onset
54.9 (4.5) years and disease duration 5.9
(2.7) years. Fifteen healthy controls (47%
male) were also recruited. The mean (SD)
age at scan was 62.6 (9.8) in bvFTD, 60.7
(5.9) in AD and 61.4 (8.9) in the
controls, with no significant differences
between the groups. Mini-Mental State
Examination differed between the groups,
being lowest in the AD group (20.4 (4.2))
then the bvFTD group (25.0 (4.6)) (AD vs
bvFTD, p=0.011), both being lower than
the control group (28.9 (1.3), p<0.001
and 0.055, respectively).
Segmentations of the habenula were

performed manually on coronal slices of a
volumetric T1-weighted MRI following a
novel segmentation protocol adapted
from previous descriptions5 6 (see online
supplementary data). We also calculated
volumes for the rest of the brain using a
cortical and subcortical parcellation as
previously described,7 (see online supple-
mentary data). All brain volumes were
corrected for total intracranial volume,
which was calculated using SPM12 (http://
www.fil.ion.ucl.ac.uk/spm).
Statistical analyses were performed in

SPSS software V.22.0 (SPSS Inc, Chicago,
Illinois, USA). Differences in demographic
and cognitive features as well as
brain volumes were tested with the
Mann–Whitney U test for continuous
variables and χ2 test for dichotomous
variables. For the brain volumes (30 com-
parisons), the Bonferroni correction for
multiple comparisons was made so that
only a threshold of p≤0.001 was consid-
ered significant.

RESULTS
The bvFTD group showed a 30% lower
right and a 28% lower left habenular
volume compared with controls (mean
(SD) right: 16.4 (2.7) vs 23.3 (2.2) mm3,
left: 16.9 (2.4) vs 23.6 (2.2), p<0.0005,
Mann-Whitney U test). The AD group
was not significantly different to controls
(<1% difference): mean (SD) right: 23.0
(2.9), left: 23.6 (3.1), but the bvFTD
group was significantly smaller than AD
(right 29% and left 28% smaller,
p<0.0005 for both sides) (figure 1).
No other cortical or subcortical region

showed a larger percentage difference in
volume in bvFTD compared with controls

than the habenula (see online supplemen-
tary table). The insula cortex, amygdala,
hippocampus and nucleus accumbens
were the other most significantly involved
regions, with volumes being 20% or
smaller than controls. Other areas of the
reward network including the frontal and
cingulate cortices, and thalamus showed
smaller volumetric differences compared
with controls (see online supplementary
table).

DISCUSSION
To the best of our knowledge, this is the
first study investigating the habenula in
bvFTD. Compared with healthy controls
and patients with AD, bvFTD showed sig-
nificantly smaller habenular volumes bilat-
erally. Furthermore, the habenula showed
the largest percentage difference in
volume in the bvFTD group compared
with controls out of all of the cortical and
subcortical regions measured. Similarly
affected regions included the nucleus
accumbens, amygdala, hippocampus and
insula cortex, which form part of the
reward network or are intrinsically linked
to it. Other key areas of the reward
network including the thalamus and
brainstem were affected to a lesser extent.
However, the key areas within the
network form smaller parts of the regions
measured in this study (ventral part of the
pallidum, dorsomedial nucleus of the thal-
amus and midbrain) and it may be that
subsegmentation of these regions would
show more specific involvement in these
particular subregions.

The habenula is involved in the process-
ing of aversive information. By inhibiting
dopamine-releasing neurones, it sup-
presses motor activity under adverse con-
ditions such as failure to obtain a reward
or anticipation of an unpleasant
outcome.8 For example, in a motion-
prediction fMRI task the habenula was
activated when a subject received feedback
indicating that their response was wrong.9

When the action of the habenula is
impaired (such as when it becomes atro-
phied), it is likely that even though the
outcome of an action may be negative, it
would be difficult for a subject to avoid
the action. This may be expressed as
abnormal reward behaviours similar to
those seen in bvFTD including increased
impulsivity, binge eating and alcohol or
recreational drug abuse.

There are some limitations to this study.
Owing to the small dimensions of the
nucleus and the resolution of the MRI, it
was not possible to distinguish between
the lateral and medial habenula, and spe-
cifically locate the involvement within the
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nucleus. The small sample size did not
allow us to further differentiate among the
different genetic mutations in FTD and
their potential different impact. Moreover,
we did not systematically collect informa-
tion about behaviours linked to reward
processing, preventing us from investigat-
ing any possible correlation with the clin-
ical symptoms. Further studies in larger
genetic and pathologically confirmed
cohorts are required to confirm the role of
the habenula in bvFTD, together with
studies aimed at defining the functional
and structural connections of the habenula
within the reward network.

In summary, we found that in bvFTD
the region with the most atrophy in com-
parison to controls was the habenula and
that this region is uniquely affected in this
disorder in comparison with an age-
matched AD cohort. We suggest that the
habenula is an under-recognised area of
importance in bvFTD and may be a key
region involved in the development of
abnormal reward processing.
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Figure 1 Volume of the left and right habenula (corrected for total intracranial volume) in 15 patients with behavioural variant frontotemporal
dementia (bvFTD), 15 patients with Alzheimer’s disease (AD) and 15 controls: (A) by group and (B) comparing the right and left side.
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SUPPLEMENTARY DATA 

 

Imaging methods 

Volumetric T1-weighted MRI was performed in all 45 subjects on a 3T scanner (Tim Trio, Siemens) 

with the following parameters: TR=2200ms, TI=900ms, TE=2.9ms, flip angle=10°, acquisition 

matrix=256x256 and spatial resolution=1.1mm. Raw T1-weighted images were transformed into 

standard space by a rigid registration to the Montreal Neurological Institute (MNI305) template,[10-

12] using NiftyReg, revision #418 (Centre for Medical Image Computing, UCL: 

http://cmic.cs.ucl.ac.uk/home/software/). 

 

Segmentations of the habenula were then performed manually on coronal slices of a volumetric T1-

weighted MRI using NiftyMIDAS (Centre for Medical Image Computing, UCL: 

http://cmic.cs.ucl.ac.uk/home/software/) using the protocol as described below. The intrarater 

intraclass correlation coefficient for this segmentation protocol was 0.938 (95% confidence intervals: 

0.771-0.984) and 0.909 (0.677-0.977) for left and right habenula respectively, tested in a sample of ten 

cognitively-normal controls, scanned using the same MRI protocol as the study participants. Dice 

overlapping and Jaccard similarity coefficient indexes were 0.83 (standard deviation 0.06) and 0.71 

(0.08) respectively. Volumes of the habenula were computed from the manual segmentations 

performed in NiftyMIDAS. 

 

In order to obtain volumes for the rest of the brain we performed a cortical parcellation using a 

multiatlas segmentation propagation approach following the brainCOLOR protocol combining 

regions of interest to calculate grey matter volumes of the entire cortex, separated into the frontal, 

temporal, parietal, occipital, cingulate, and insula cortices.[13] We also performed a subcortical 

parcellation using the Neuromorphometrics protocol for the hippocampus, amygdala, caudate, 

http://cmic.cs.ucl.ac.uk/home/software/
http://cmic.cs.ucl.ac.uk/home/software/


putamen, pallidum, nucleus accumbens, thalamus and brainstem and a parcellation of the 

cerebellum using the Diedrichsen cerebellar atlas producing a measure for the entire cerebellum by 

combining regions of interest.[13] 

 

All brain volumes were corrected for total intracranial volume (TIV), which was calculated using 

the Statistical Parametric Mapping (SPM) 12 software, version 6225 (www.fil.ion.ucl.ac.uk/spm), 

running under Matlab R2012b (Math Works, Natick, MA, USA). The TIV corrected volume of a 

specific structure for each subject "i" was computed as follows: Structure volumecorrected(i) = Structure 

volumeraw(i)*TIVmean / TIV(i), where "Structure volumeraw(i)" is the raw value of the structure of the 

subject "i", "TIVmean" is the average TIV of the study group, and "TIV(i)" is the TIV of the subject "i". 

 

Detailed segmentation protocol for the habenula on 3T MRI 

 

1. Introduction 

This protocol describes how to manually segment the human habenula on volumetric T1-weighted 

magnetic resonance images (MRIs), combining the criteria described by Savitz et al., 2011 [5] and by 

Lawson et al., 2013 [6] (Supplementary Figure). The habenula contains relatively dense white matter 

plexuses, so it can be distinguished from the adjacent gray matter nuclei by its contrast (i.e. hyper-

intensity) on MRI. 

 

2. Segmentation procedures 

2.1 Image Orientation/Registration/Standard space 

The segmentations are made on MRIs rigidly registered to Montreal Neurological Institute (MNI) 

standard space. 

http://www.fil.ion.ucl.ac.uk/spm


 

2.2 Direction of segmentation 

Segmentation proceeds on contiguous coronal slices in the caudo-rostral direction. For a slice 

thickness of 1 mm, approximately 4-5 slices include the habenula (Supplementary Figure). 

 

3. Segmentation landmarks 

The segmentation includes the lateral and medial habenular nuclei, which could not be reliably 

distinguished from each other and thus are combined into a single habenular region. 

 

3.1 Most caudal slice 

The habenular segmentation begins on the caudal slice containing the posterior commissure (or the 

habenular commissure), in which the habenula is present as opposed to cerebrospinal fluid or the 

most rostral extent of the pineal gland. The habenula is clearly evident as a pyramidal-shaped 

structure which bulges into the third ventricle along the ventromedial aspect of the thalamus. 

 

3.2 Most rostral slice 

The habenular segmentation ends at the most rostral slice where the bright habenular tissue is not 

visible as protruding into the cerebrospinal fluid of the third ventricle, while it appears the dorsal 

tip of the stria medullaris (the white matter track which delimits the ventromedial aspect of the 

medial thalamus). In this slice, the habenula is not visible as delimited ventrally and medially from 

the thalamus by the stria medullaris of thalamus. 

 

3.3 Ventral boundary 



In the most caudal slices, the ventral boundary is defined by the dorsal edge of the white matter of 

the posterior commissure (or the habenular commissure). In the most rostral slices, the habenula 

borders with the paraventricular nucleus of the thalamus. 

 

3.4 Dorso-lateral boundary 

The dorsal and lateral borders are defined by the mediodorsal thalamic nucleus, limitans nucleus or 

pretectal area in most caudal slices, and by the white matter of the stria medullaris of the thalamus 

in the rostral slices. 

 

3.5 Medial boundary 

The cerebrospinal fluid of the third ventricle is the prominent landmark to define the medial 

boundary of the habenula. 

 



Supplementary Figure. Example of habenular segmentation on the ICBM152 2009c Nonlinear Symmetric - 1x1x1mm template (McConnell Brain Imaging Centre, Montreal 

Neurological Institute, McGill University). All 1 mm slices are shown, in the caudo-rostral direction. 

 

 



Supplementary Table. Volumetry of brain structures in 15 patients with bvFTD and 15 healthy 

control participants. Volumes are corrected for TIV. Values denote mean (standard deviation) 

volumes in mm3. p-values denote significance on Mann-Whitney U test. *denotes significance after 

correction for multiple comparisons. 

 

 
bvFTD 

(n=15) 

Control 

(n=15) 

p-value 

(bvFTD  

vs Ctrl) 

% difference 

(bvFTD  

vs Ctrl) 

Habenula 
Right 16 (3) 23 (2) <0.001* 30% 

Left 17 (2) 24 (2) <0.001* 28% 

Frontal Cortex 
Right 79850 (4699) 89306 (5454) <0.001* 11% 

Left 77130 (3817) 86667 (5570) <0.001* 11% 

Temporal 

Cortex 

Right 49270 (6741) 58717 (2766) <0.001* 16% 

Left 48265 (7676) 58919 (3158) <0.001* 18% 

Insula  

Cortex 

Right 5298 (684) 6918 (703) <0.001* 23% 

Left 5339 (791) 7263 (623) <0.001* 26% 

Cingulate 

Cortex 

Right 11270 (1138) 12405 (1123) 0.029 9% 

Left 12217 (872) 13727 (1273) <0.001* 11% 

Parietal Cortex 
Right 43906 (3592) 47309 (3513) 0.019 7% 

Left 44204 (2984) 47398 (4572) 0.037 7% 

Occipital 

Cortex 

Right 35453 (2235) 36857 (2988) 0.285 4% 

Left 33984 (1873) 35475 (2640) 0.074 4% 

Hippocampus 
Right 3645 (892) 4636 (486) 0.001* 21% 

Left 3361(784) 4397 (337) <0.001* 24% 

Amygdala 
Right 731 (237) 971 (108) 0.003* 25% 

Left 708 (206) 1015 (119) <0.001* 30% 

Caudate 
Right 3231 (620) 3526 (370) 0.037 8% 

Left 2944 (568) 3341(404) 0.011 12% 

Putamen 
Right 4290 (620) 4857 (560) 0.004 12% 

Left 4268 (579) 4872 (613) 0.008 12% 

Pallidum 
Right 803 (119) 850 (72) 0.267 5% 

Left 814 (118) 883 (98) 0.089 8% 

Nucleus 

accumbens 

Right 517 (103) 693 (65) <0.001* 25% 

Left 531 (131) 757 (77) <0.001* 30% 

Thalamus 
Right 5457 (675) 6351 (471) <0.001* 14% 

Left 5256 (646) 6206 (419) <0.001* 15% 

Brain Stem 9109 (911) 9942 (647) 0.009 8% 

Cerebellum 100761 (10296) 107356 (7454) 0.074 6% 
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