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AbsTrACT
background Several studies suggest that multiple 
rare genetic variants in genes causing monogenic forms 
of neurodegenerative disorders interact synergistically 
to increase disease risk or reduce the age of onset, but 
these studies have not been validated in large sporadic 
case series.
Methods We analysed 980 neuropathologically 
characterised human brains with Alzheimer’s disease 
(AD), parkinson’s disease-dementia with Lewy bodies 
(pD-DLB), frontotemporal dementia-amyotrophic lateral 
sclerosis (FtD-ALS) and age-matched controls. Genetic 
variants were assessed using the American College of 
Medical Genetics criteria for pathogenicity. Individuals 
with two or more variants within a relevant disease gene 
panel were defined as ’oligogenic’.
results the majority of oligogenic variant combinations 
consisted of a highly penetrant allele or known risk factor 
in combination with another rare but likely benign allele. 
the presence of oligogenic variants did not influence 
the age of onset or disease severity. After controlling 
for the single known major risk allele, the frequency of 
oligogenic variants was no different between cases and 
controls.
Conclusions A priori, individuals with AD, pD-DLB 
and FtD-ALS are more likely to harbour a known 
genetic risk factor, and it is the burden of these variants 
in combination with rare benign alleles that is likely 
to be responsible for some oligogenic associations. 
Controlling for this bias is essential in studies 
investigating a potential role for oligogenic variation in 
neurodegenerative diseases.

bACkgrouNd
Genetic variation in over 50 genes contributes to the 
risk of developing neurodegenerative diseases.1–5 
Some of the known risk alleles are common in 
the general population, raising the possibility that 
multiple interacting genetic variants might enhance 
the risk of developing disease or modify the disease 
phenotype.6–10 In keeping with this, some familial 
cases of frontotemporal dementia-amyotrophic 
lateral sclerosis (FTD-ALS) appear to have a 
greater ‘burden’ of variants when compared with 
controls,11 which may explain an earlier age of 
onset.8 However, it is currently not clear whether 
this also occurs in non-familial FTD-ALS cases 
or in other neurodegenerative disorders, where 

previously reported associations could either be 
due to a single highly penetrant monogenic allele 
co-associated with benign non-functioning variants, 
or whether there is a genuine synergistic interac-
tion between two or more functional genetic vari-
ants. To address this, we performed comprehensive 
clinical variant interpretation on exome sequence 
data and C9Orf72 genotypes in 980 neuropatho-
logically characterised brains from the MRC Brain 
Bank Network.

MeThods
We studied the following: Alzheimer’s disease (AD), 
n=277; FTD-ALS n=244; Parkinson’s disease-de-
mentia with Lewy bodies (PD-DLB), n=97 and 
neuropathologically normal controls, n=362,12 
with 97.2% of all individuals studied having no 
family history of a neurodegenerative disorder 
(online supplementary table 1). Demographic data 
including the age of disease onset and death, disease 
duration and family history of disease, together 
with the antemortem clinical diagnosis and post-
mortem neuropathological diagnosis were available 
(table 1).

Exome sequencing was restricted to on-target 
homozygous, heterozygous and compound hetero-
zygous variants with a minimum read depth of 10, 
and base quality score of 20 across the 980 subjects, 
where the variant allele frequency (VAF) was <5% 
in the Exome Aggregation Consortium (ExAC).13 
Ingenuity Variant Analysis was used to study 49 
genes known to be associated with neurodegen-
erative disorders (see online supplementary table 
2). The 49 genes were subsequently grouped into 
six gene panels: AD panel (n=8), PD-DLB panel 
(n=16), full FTD-ALS panel (n=28), medium 
FTD-ALS panel based on that previously described3 
(n=12) and a small FTD-ALS panel as previously 
described11 (n=5), together with the entire panel 
(n=49 genes). All panels were filtered for variants 
present at VAF <1% and <5% C9orf72 geno-
types12 as stated.

Pathogenic (P) or likely pathogenic (LP) variants 
were defined using the American College of Medical 
Genetics (ACMG) criteria14 as described,12 together 
with known genetic risk factors. Other variants 
identified as benign (B), likely benign (LB) or of 
uncertain significance (US) based on the ACMG 
criteria, and the remaining variants (VAF 0.5%–5% 
in monogenic genes, or non-risk factor variants in 
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risk-factor genes) were annotated as unclassified (UC). Oligo-
genic individuals were defined as those who had two or more 
non-synonymous, frameshift or stop-loss or gain-inducing point 
mutations in the relevant panel (as stated), or those who tested 
positive for the C9orf72 hexanucleotide repeat expansion plus 
had at least one of the point mutation within the panel.

resulTs
Across the entire cohort of 980 subjects, we observed a total 
of 57 genetic variants in the AD gene panel, 141 variants 
in the primary FTD-ALS gene panel and 140 in the PD-DLB 
gene panel (table 1). Six AD cases (2.17%) had >1 variant in 
the AD panel, and 19 cases (7.79%) of primary FTD-ALS had 
>1 variant in the primary FTD-ALS panel. These proportions 
were no different to control subjects (control subjects for the 
AD panel: 5/362, 1.38%, P=0.545; and full FTD-ALS panel: 
26/362, 7.18%, P=0.14). In contrast, 23 cases of PD-DLB 
(23.71%) had >1 variant in PD-DLB genes, which was greater 
than controls (controls: 37/362, 10.22%, P=0.004, see online 
supplementary table 3).

Based on ACMG criteria for pathogenicity,12 only three 
individuals in the entire study (0.30% of n=980) harboured 
>1 pathogenic, likely pathogenic or known risk factor for a 
neurodegenerative disease. One patient with DLB (0.1% of 
n=980) (age of onset in 60s, and death early 70s) had a LRRK2 
p.M1646T mutation associated with PD, and a TREM2 p.R62H 
mutation associated with AD.15 A patient with AD developing in 
the seventh decade of life had a PSEN2 p.L204I mutation and 
the TREM2 p.R62H risk factor. A third patient who had early 
onset PD (onset age fourth decade) due to a compound hetero-
zygous mutation in PARK2 (p.G430D/pR275W) also had the 
p.R98W TREM2 possible risk factor for AD,16 but displayed no 
evidence of any amyloid deposition at postmortem (see online 
supplementary table 8,9).

We observed a significant enrichment of highly penetrant 
alleles or risk factors within ‘oligogenic’ cases in all disease 
cohorts (see online supplementary table 4). In FTD-ALS, 11 of 
the 19 oligogenic cases (57.9%) contained one highly penetrant 
allele or risk factor within the primary panel, giving the presence 
of oligogenic variation a positive predictive value (PPV) to iden-
tify an individual as someone carrying a pathogenic mutation 
or known risk factor at 57.9% (95% CI 33.5% to 79.8%) (see 
online supplementary table 5). We subsequently varied the panel 
size to reflect published approaches,3 11 raised the MAF to 5% 
within each panel and removed C9orf72 data from the analysis. 
In all of these permutations, there was a significant over-repre-
sentation of highly penetrant allele or risk factor carriers within 
the oligogenic cohort (figure 1, see online supplementary table 

4,5). The same enrichment for highly penetrant alleles within 
‘oligogenic’ cases was seen in the AD panel at 1% (PPV 100%, 
95% CI 54.1% to 100.0%) and PD-DLB panel (PPV 43.5%, 
95% CI 23.2% to 65.5%) (see online supplementary table 5). 
We subsequently combined all data to employ Bayesian mathe-
matical modelling (see online supplementary data file 2), which 
showed that the presence of >1 variant within a relevant disease 
gene panel in an affected individual confers an 80% posterior 
predictive probability that they have a monogenic allele or risk 
factor for that disease.

We then investigated whether the enrichment of monogenic 
alleles or risk factors within oligogenic cases was due to a 
greater overall background mutation rate in these individuals as 
previously suggested in some genotypes of PD,17 but found no 
evidence of such an association (see online supplementary table 
6).

Finally, we removed all cases possessing a highly penetrant 
allele or risk factor, and compared remaining oligogenic cases 
of PD-DLB and FTD-ALS with controls (n=362). Based on 
this analysis, there was no difference in either the proportion 
of ‘oligogenic’ cases or the mean pathogenicity defined by both 
SIFT or Polyphen2 score (see online supplementary table 7-9, 
figures 1−6) between any study group. We also observed no 
difference in the age of onset, age of death or disease duration 
between remaining oligogenic cases compared with those with 
<2 variants (see online supplementary figures 7,8), including the 
C9orf72 expansion in the presence of additional variants (see 
online supplementary figure 9).

disCussioN
With ever more comprehensive panels of genetic testing in 
neurodegenerative disorders, the possibility of detecting more 
than one rare variant in an individual will become increasingly 
likely, posing significant diagnostic challenges and difficulties 
for genetic counselling. Our data show the observed frequency 
of ‘oligogenic’ variation is linked to the size of the gene panel 
and MAF threshold, ranging from 1.4% (AD panel) to 13.3% 
(PD-DLB panel) in both affected and unaffected individuals 
(see online supplementary table 3). This highlights that, while 
each allele is in itself rare, it is not uncommon for any indi-
vidual to have more than one rare variant across a small disease 
gene panel. This should be borne in mind when investigating 
the possibility of an oligogenic mechanism, particularly given the 
increasing number of genes identified as causing or contributing 
to neurodegenerative disorders.

Why are our conclusions different to previous studies that 
were of a similar size? In order to be defined as ‘oligogenic’, an 
individual must have >1 variant in a known relevant risk gene. 

Table 1 Clinical and demographic data for the major cohorts within the study

Phenotype
Number 
of cases

Male 
(number)

Female 
(number)

Mean 
age onset 
(years) (sd)

Mean age 
death (years) 
(sd)

Number 
with Fh

Cases with 
highly penetrant 
allele or rF

oligogenic 
cases (N (%))

oligogenic cases 
possessing a 
penetrant allele or rF 
(N (%))

Fisher’s test 
(P value)

Control 362 232 (64.1) 130 (35.9) N/A 63.3 (18.8) N/A N/A

FTD-ALS 244 143 (58.6) 101 (41.4) 59.4 (11.8) 64.6 (11.7) 14 33 19 (7.78%) 11 (57.9%) 0.0001

AD 277 131 (47.3) 146 (52.7) 65.4 (10.2) 77.7 (11.7) 11 36 6 (2.17%) 6 (100%) 0.0001

DLB 58 36 (62.1) 22 (37.9) 66.7 (8.4) 76.7 (7.0)

2 16 25 (25.78%) 10 (62.5%) 0.0007PD 39 28 (71.8) 11 (28.2) 59.9 (10.9) 72.3 (9.2)

Oligogenic was defined by the presence of >1 variant within the relevant disease panel at <1% MAF in the Exome Aggregation Consortium database. Monogenic or cases 
harbouring genetic risk factors were defined as outlined in the supplementary methods.11

AD, Alzheimer’s disease; DLB, dementia with Lewy bodies ;FH, family history; FTD-ALS, frontotemporal dementia-amyotrophic lateral sclerosis ; MAF, Minor allele frequency; N/A, 
not available; PD, Parkinson’s disease. 
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This introduces a systematic bias, whereby affected individuals 
are more likely to harbour one of these alleles than healthy aged 
individuals. This has been seen previously,8 where 10/18 (55.6%) 
of the ‘oligogenic’ cases had an established highly penetrant 
allele already known to cause an earlier onset disease (see online 
supplementary data file 1). The presence of these known risk 
alleles, in conjunction with a background rate of polymorphic 
variation, inevitably results in individuals with a known highly 
penetrant allele or risk factor being more likely to fall into the 
‘oligogenic’ group. In keeping with this, our analysis shows that 
the vast majority of individuals defined as having ‘oligogenic’ 
variation do indeed have a known risk allele or highly penetrant 
variant, explaining the initial association we observed between 
oligogenic variants and PD-DLB. Importantly, after excluding 
the known major variant in individual cases there was no associ-
ation between the benign oligogenic variation and neurodegen-
erative disease or the age of onset.

This same systematic bias will lead to the apparent enrich-
ment of ‘oligogenic’ variants in familial cases. By being familial, 
these individuals are more likely to harbour a known risk genetic 
factor, which when combined with the background variant 
carrier rate, makes them more likely to be classified as oligogenic 
than healthy controls. Thus, a priori, being a familial case will 
make it more likely for an individual to have oligogenic variants. 
This does not necessarily mean that the additional variants are 
having an effect on the risk of being a familial case. Given the 
frequency of any individual harbouring two or more variants, 
and the likely diminishing impact of each variant on the pheno-
type and disease risk, substantially larger datasets (eg, n>10 000) 
will be required to definitively resolve this complex issue with 
robust variant pathogenicity interpretation.
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Figure 1 American College of Medical Genetics (ACMG) variant criteria for all cases within the frontotemporal dementia-amyotrophic lateral sclerosis 
(FtD-ALS) and parkinson’s disease-dementia with Lewy bodies (pD-DLB) cohorts that had >1 variant within their respective disease panels at 1% MAF. 
the relative combination of alleles can be seen in the top right of each cohort’s chart. Key references to ACMG classification of each variant: p, pathogenic; 
Lp, likely pathogenic; rF, risk factor; pr, pathogenic in the recessive state (but considered likely benign in the heterozygous state); LB, likely benign; US, 
uncertain significance; UC, uncategorised.
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