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FTD/ALS are needed to implement pNfL dosage in clinical care 
and research practice, and to define appropriate endpoints in 
the forthcoming gene- tailored therapeutic trials.9 11 16 19 These 
critical points are addressed in this study, which analyses pNfL 
in one of the largest cohorts of FTD/ALS mutation carriers, 
followed over 2–3 years, thereby allowing definition of gene- 
specific changes and longitudinal trajectories for C9orf72 and 
for GRN carriers, separately.

First, we provided detailed cross- sectional and longitudinal 
characterisation of age- related changes in controls, where NfL 
release is mainly due to physiological axonal turnover.11 This is 
a fundamental prerequisite to appropriately interpret values in 
pathological conditions. Prior studies have addressed the impact 
of age on NfL, but most focused on elderly populations, during 
normal or pathological ageing.9 14 31–33 Here, we traced pNfL 
dynamics across the life span with a broad representation of age 
classes, from <30 to >70 years, providing greater information 
on early and mid- adulthood. pNfL levels progressively increase 
with age, from ~5 pg/mL in the youngest to ~18 pg/mL in the 
eldest individuals. This progression is quasi- linear up to 60 years 
and is followed by a steeper age- related trend in older subjects. 
Importantly, pNfL markedly increase throughout the sixth and 
seventh decades, the life period in which FTD and ALS usually 

manifest. This is possibly due to less efficient protein turnover or 
a progressive ageing- related axonal loss. Alternatively, clinically 
silent neurological disorders may affect a subset of the oldest 
controls, in whom clinical proximity to other unrelated neuro-
degenerative conditions cannot be excluded. A similar low- 
amplitude progression was evidenced in another study focused 
on normal ageing,33 supporting the robustness of our findings. 
These studies indicate that NfL levels must be cautiously inter-
preted in neurological diseases, relatively to reference values in 
age- matched controls. Thereby, we established thresholds by 
decades, taking into account the physiological pNfL increases 
throughout the life span. It has to be kept in mind, however, that 
these thresholds may change on different analytical conditions, 
thus encouraging joint efforts between centres to standardise 
dosing techniques and harmonise the interpretation of results.34

Additionally, we determined reference values in controls for 
all age classes (table 2) and a mean expected ARC of about +4%, 
from longitudinal observations over a 3- year time course. This 
rate, concordant with other works,11 32 33 35 may serve as a land-
mark for clinical studies.

Overall, patients presented higher pNfL levels than controls 
and greater progression over time with an ARC of ~27%. In our 
study, an in- depth analysis depicts two distinct pNfL trajecto-
ries according to the genotype. GRN disease was associated with 
extremely high levels and progression rates, overshadowing the 
effect of ageing. The higher baseline levels in GRN compared 
with C9orf72 patients, and the ARC of ~30%, could reflect the 
impressive neuroaxonal degeneration and frequent white matter 
changes in GRN disease.5 36 37 Lower levels in C9orf72 patients 
may also be partly due to the clinical heterogeneity within this 
group, some patients presenting a less aggressive, slowly progres-
sive course.

In C9orf72 patients, pNfL levels were tightly associated 
with the aggressiveness of the phenotype. ALS and psychiatric 
presentations showed the highest and lowest values, respec-
tively. This is concordant with prior studies in patients with 
ALS, displaying higher levels compared with other neurode-
generative conditions, possibly due to the large- calibre axonal 
degeneration characterising ALS.17 18 30 38 On the other hand, 
the patients with psychiatric presentations usually have long- 
standing disease course, without patent markers of neurodegen-
eration.26 Accordingly, their pNfL levels were significantly lower 

Figure 3 Longitudinal pNfL changes in patients and controls. (A) Mean baseline and follow- up pNfL levels in 44 patients and 36 controls with comparable 
demographic variables undergoing longitudinal sampling (mean follow- up: 2 years). There was greater increase in C9orf72 and GRN patients compared with 
controls (p<0.0001), and in GRN patients compared with C9orf72 patients (p=0.016). (B) Spaghetti plot representing pNfL changes from the first to the 
last observation in the same participants, at the individual (dashed lines) and group (continuous lines, CI 99%) levels. (C) Individual- level and group- level 
trajectories of SP C9orf72 patients compared with those with standard disease course over two consecutive visits (mean follow- up: 1.2 years), showing a 
lesser increase in the former (p=0.05). CI: confidence interval; NfL, neurofilament light chain; pNfL, plasma neurofilament light chain; SP, slowly progressive; 
y, years.

Table 3 Optimal cut- off values separating patients from controls

pNfL value AUC Youden Se Sp

C9orf72 patients versus controls

  Overall 19.00 0.93 0.71 0.83 0.88

  <50 years 9.74 0.87 0.66 0.83 0.82

  50.0–59.9 years 16.03 1 1 1 1

  60.0–69.9 years 20.85 0.92 0.65 0.81 0.84

  �70 years 26.47 0.90 0.76 0.88 0.88

GRN patients versus controls

  Overall 27.48 0.97 0.91 0.94 0.97

  <50 years 15.70 0.77 0.73 0.75 0.98

  50.0–59.9 years 17.77 1 1 1 1

  60.0–69.9 years 35.69 0.97 0.96 0.96 1

  �70 years 27.71 0.98 0.88 1 0.88

Values are indicated in pg/mL.
AUC, area under the curve; pNfL, plasma neuro�lament light chain; Se, sensitivity; 
Sp, speci�city.
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than those of patients with FTD and ALS in our study and more 
similar to those of patients with primary psychiatric disorders. 
Prior findings highlighted the potential of NfL to differentiate 
bvFTD from psychiatric disorders.39 40 Our results go somehow 
further, indicating that NfL might not allow to distinguish atyp-
ical C9orf72- associated psychosis from patients with primary 
psychiatric disorders.

More importantly, this study suggests the ARC could be 
used to predict disease progression in C9orf72 patients. It was 
impressively low in patients with slowly progressive phenotypes, 
displaying no detectable increases at 1 year, beyond what can be 
attributed to ageing. This strikingly contrasted with the annual 
~25% increase in patients with typical disease course. These 
observations highlight the importance to repeat pNfL measure-
ments, and the usefulness of the ARC in clinical and research 
settings as a prognostic index of progression in C9orf72 patients, 
lower ARC predicting a longer, less aggressive course.

The differences we observed in the two genetic cohorts point 
out the importance of analysing each genotype independently 
also in presymptomatic/prodromal carriers.20 A recent important 
study demonstrated the value of baseline NfL to predict pheno-
conversion.21 However, the cut- offs determined in two indepen-
dent mixed genetic cohorts analysed in the latter study were not 
unequivocal, possibly because of demographic and/or genetic 
heterogeneity. Furthermore, the importance of repeated dosages 
during the presymptomatic stage has been already emphasised in 
genetic forms of Alzheimer disease.29 We suggest the same atten-
tion should be paid to PS FTD/ALS mutation carriers, where a 
shift to higher ARC during follow- up dosages may unveil the 
emergence of pathological processes. In the overall PS group, 
the ARC was +3.2%, similar to controls, without differences 
between genotypes. Four C9orf72 carriers, whose ARC was up 
to +15%, moved to the prodromal/symptomatic stage during 
follow- up, emphasising the major interest of repeated pNfL 
dosages for the prediction of phenoconversion. Notably, pNfL 
increased 3 years before clinical onset in one of them who devel-
oped ALS, in a similar timeframe than previously described 
converters.14 20 21

More interestingly, four other PS (one C9orf72 and three 
GRN) with high baseline pNfL and/or high ARC displayed no 

clinical symptoms during follow- up. Similar proportions of 
‘non- converting’ PS with high NfL levels have been reported by 
others.14 21 These individuals might be in an earlier preclinical 
stage than the former PS, before the emergence of prodromal 
symptoms, thus underlining the usefulness of long preclinical 
follow- ups. Accordingly, NfL levels increase early in the cascade 
of disease biomarkers in GRN PS, ~2 to 5 years before the mild 
behavioural/cognitive impairment stage.14 41 The integration of 
information stemming from pNfL dosage with that provided by 
biochemical, neuroimaging, cognitive biomarkers could refine 
our understanding of the disease trajectory and provide insights 
into the mechanisms associated with clinical conversion.

The overall pNfL trajectories during the entire disease course 
strikingly differed between the two genetic cohorts (figure 5). 
GRN carriers had low levels on average during the presymptom-
atic phase and displayed major and sustained increases after clin-
ical onset. C9orf72 carriers displayed higher pNfL values in the 
presymptomatic, and lower in the clinical phase, compared with 
the former. An association with age was evidenced throughout 
all C9orf72- disease, supporting a less abrupt transition between 
the preclinical and clinical phases. This suggests that disease 
course may extend throughout adulthood in C9orf72 carriers 
and that progression biomarkers smoothly change during a 
long presymptomatic phase, in line with previous neuroimaging 
studies.24 42–44 Lastly, pNfL levels and change rates were rather 
heterogeneous in the clinical phase of C9orf72 disease and were 
strongly influenced by the disease phenotype and progression 
pace. Notably, sustained increases were observed soon after 
disease onset in the large majority of patients and a few years 
before onset in prodromal carriers. On the other hand, patients 
with slow progression showed significantly lower levels even at 
several years from onset.

This study has some limitations. Quantitative measures of 
disease severity and neuroimaging data were not included, as 
standardised data was available only for a part of participants. 
However, other studies have already well demonstrated the 
association of NfL levels with cognitive decline and cerebral 
atrophy.14 16 21 For C9orf72 carriers, the proposed cut- offs could 
be further refined according to phenotype and/or progression 
rate. Moreover, this study specifically focused on genetic FTD/

Figure 4 Baseline pNfL levels and longitudinal changes in presymptomatic carriers. (A) pNfL levels at baseline according to the age at sampling in 
C9orf72 (r=0.651, p<0.0001) and in GRN carriers (r=0.359, p=0.029). (B) Spaghetti plot representing pNfL changes from the first to the last observations 
in 66 carriers and 58 controls with comparable demographic variables undergoing longitudinal sampling (mean follow- up: 3 years). (C) Longitudinal 
trajectories of pNfL levels in C9orf72 and GRN carriers and controls (continuous lines, CI 99%), which were comparable at group level (p=0.172). Eight 
individuals (five C9orf72 and three GRN carriers: dots and dashed lines) qualified as outliers, having remarkable baseline values and/or increases over time. 
Four of them were prodromal C9orf72 carriers (see online supplemental table A1). CI : confidence interval; NfL, neurofilament light chain; pNfL, plasma 
neurofilament light chain; y, years.
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Figure 5 Modelisation of pNfL trajectories and progression rates over the entire disease course, from presymptomatic phase to clinical phase, in GRN and 
C9orf72 carriers. (A,B) pNfL levels at baseline and at follow- up visits in presymptomatic and symptomatic carriers of GRN (A) and C9orf72 (B) mutations, 
at individual and group levels, according to their clinical status and their (estimated) distance to/from disease onset. (C) pNfL annualised rates of change 
(%) in presymptomatic and symptomatic GRN and C9orf72 carriers according to their (estimated) distance to/from disease onset. Patients are classified 
according to their phenotype. Among C9orf72 patients, those with SP disease course are presented in a different colour. On the x axis, the disease duration 
from onset is given for patients, and the estimated years to clinical onset is given for presymptomatic carriers. Estimated years to onset were calculated for 
each individual, taking into account the mean age of disease onset in his/her family. For prodromal C9orf72 carriers, the age at their first subtle cognitive/
behavioural and/or motor symptoms was considered. ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; NfL, neurofilament light chain; pNfL, 
plasma neurofilament light chain; PSY, psychiatric presentations; SP, slowly progressive.

copyright.
 on D

ecem
ber 8, 2021 by guest. P

rotected by
http://jnnp.bm

j.com
/

J N
eurol N

eurosurg P
sychiatry: first published as 10.1136/jnnp-2021-326914 on 4 A

ugust 2021. D
ow

nloaded from
 

http://jnnp.bmj.com/


10 Saracino D, et al. J Neurol Neurosurg Psychiatry 2021;0:1–11. doi:10.1136/jnnp-2021-326914

Neurogenetics

ALS and the proposed thresholds should be used to predict clin-
ical evolution in presymptomatic carriers only when the muta-
tion status is known. They are not intended to be used in sporadic 
forms, or when other diseases are in the differential diagnosis. 
In the modelisation of pNfL trajectories, the estimation of the 
years to disease onset in presymptomatic carriers was performed 
taking into account the mean age at onset in their families, which 
is known to show an imperfect correlation with the individu-
al’s actual age at onset.5 Lastly, our findings should be replicated 
in other control populations, as well as in independent genetic 
cohorts, before employing references and thresholds in clinical 
practice. A standardised system for pNfL measurement would be 
highly recommended to reduce the variability across centres and 
harmonise the interpretation of the results.

Our study provides valuable information on pNfL dynamics 
under physiological conditions, and in C9orf72 and GRN 
diseases, improving their interpretability as biomarkers in future 
studies and as potential prognostic indexes in clinical practice. In 
particular, the impact of age in the healthy and the specific pNfL 
trajectories in the two different genetic cohorts led us to propose 
age- specific and gene- specific thresholds and change rates. They 
allow partial filling of the gaps of knowledge currently existing 
in pNfL dynamics and may prove their usefulness to spot unusual 
values in at- risk subjects.
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