mRNA COVID-19 vaccines do not increase the short-term risk of clinical relapses in multiple sclerosis

INTRODUCTION
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system. A novel coronavirus, namely SARS-CoV-2, has been recently responsible for the highly infectious disease referred as COVID-19, rapidly spreading all over the world. Many vaccines have been developed to control COVID-19 pandemic, including the mRNA vaccines Pfizer/BioNTech (BNT162b2) and Moderna (mRNA1273). The vaccination of people with MS (pwMS) has been recommended by several national and international MS societies. However, effectiveness and safety of anti-COVID-19 mRNA vaccines in MS need to be confirmed. The aim of this study was to evaluate the short-term risk of clinical relapses in pwMS in the 2 months after the first administration of an mRNA COVID-19 vaccine.

PATIENTS AND METHODS
Twenty-five Italian MS tertiary centres participated to this prospective, self-controlled, multicentric observational study. In Italy, COVID-19 population vaccination started at the end of December 2020 and first involved healthcare professionals. All pwMS, diagnosed according to McDonald’s 2017 criteria, who underwent the first dose of an mRNA COVID-19 vaccine within January 2021 were recruited from each participating centre. All patients received Pfizer/BioNTech BNT162b2 vaccine according to vaccine availability in Italy. Database lock was planned on 31 March so that all patients were followed for at least 2 months after the first dose. The following data were collected: (1) sex; (2) age and disease duration; (3) disease course (relapsing remitting; secondary progressive; primary progressive); (4) disability score (Expanded Disability Status Scale, EDSS); (5) clinical relapses in the year before vaccination, with specific regard to the 2 months immediately preceding vaccination; (6) MRI activity in the year before vaccination (new T2 or Gd enhancing—Gd+—lesions); (7) previous molecular swab confirmed SARS-CoV-2 infection; (8) vaccine administration date and (9) disease-modifying treatments at the time of vaccination. The presence, characteristics and number of relapses in the 60 days after the first administration of the vaccine were recorded. A relapse was defined as a clinical episode suggestive of demyelination developing acutely or subacutely, with a duration of at least 24 hours in the absence of fever or infection. The interval between vaccination and clinical relapse was calculated.

STATISTICAL ANALYSIS
Continuous variables are reported as mean±SD, while categorical variables are reported as count and percentages. To test the difference between relapses incidence in the 2 months before and after vaccination, we fitted a paired negative binomial model. Demographical and clinical variables (age, gender, disease duration and EDSS) were also included as covariates. For all the tests, significance was set at a p value<0.05.

RESULTS
We included 324 pwMS exposed to the Pfizer/BioNTech BNT162b2 vaccine. Cohort characteristics are reported in Table 1. Overall, 28 out of 324 (8.6%) patients had experienced SARS-CoV-2 infection confirmed by a molecular swab (224.8±103.5 days before the first dose of vaccination). Overall, 322/324 patients (99.4%) underwent both the doses of the vaccine with an interval between doses of 21.5±4 days. Two patients did not complete the vaccination schedule: one because of the evidence of SARS-CoV-2 infection after the first dose and the other because of the evidence of radiological activity without clinical relapses in an already planned MRI scan, 3 days after the first dose, for which the second vaccine dose was postponed. In the 2 months before vaccination, six clinical relapses were reported in 6 out of 324 patients (1.9%). In the 2 months after vaccination, seven clinical relapses occurred in 7/324 patients (2.2%). The incidence of relapses in the 2 months before and after vaccination was not statistically different (B=0.154, 95%CI −0.948 to 1.288, p=0.78). Also, demographic (age, gender) and clinical disease characteristics (disease duration, EDSS) had no effect on relapses occurrence. Five of the relapsing patients were women. Five relapses were monofocal and two were multifocal. The mean time interval between the first dose of vaccination and the clinical relapse was 44±11.6 days. At the time of vaccination, three patients were treated with dimethyl fumarate, one with glatiramer acetate, two with ocrelizumab and one was not treated.

DISCUSSION
Vaccines safety in pwMS has been matter of debate. In the current COVID-19 pandemic scenario, the availability of mRNA vaccines warrants the urgent need to define their safety in pwMS. Our preliminary analysis demonstrated that the Pfizer/BioNTech BNT162b2 vaccine does not increase the short-term risk of clinical reactivation in pwMS. Recently, Achiron et al reported in an observational study on 555 pwMS a similar rate of patients with acute relapse after Pfizer/BioNTech BNT162b2 vaccine. No increased risk of relapse activity was estimated comparing that cohort with a cohort of non-vaccinated patients evaluated in the same period in the pre-pandemic era. The latter study, however, suffers of the limitation of an heterogeneous follow-up period (about 20% of patients with relapses were followed for less than 14 days after immunisation) which might have lowered the number of recorded relapses. Our study is the first prospective study including a large cohort of patients with MS who were followed, with a self-controlled design,
for at least 2 months after the first dose of the Pfizer/BioNTech BNT162b2 vaccine. A limit of our study, mainly related to its real life context, is the lack of MRI data, which might prevent the detection of potential MRI activity in absence of clinical relapses, as well as the short-term follow-up. Larger observational studies with longer follow-up would be desirable. Moreover, due to the low number of patients with progressive MS in the cohort (21 out of 324 subjects, 6.5%), no clear conclusions can be drawn on the effects of Pfizer/BioNTech BNT162b2 vaccination on disease worsening in progressive MS. Despite these limitations, we think that the results of our study can improve clinical practice driving clinical decisions and support the recommendation to promote access of pwMS to COVID-19 vaccination.

Massimiliano Di Filippo,1 Cinzia Cordioli,2 Simona Malucchi,3 Pietro Annovazzi,4 Paola Cavalla,5 Valentina Torri Clerici,6 Paolo Ragone,7 Viviana Nociti,8 Marta Radaelli,9 Alice Laroni,10 Fabio Buttari,11 Lorena Lorefice,12 Diana Ferraro,13 Alberto Gajofatto,14 Luca Prosperini,15 Roberta Fantozzi,16 Laura Boffa,17 Roberta Lanzillo,18 Marcello Moccia,19 Marinella Clerico,16 Giovanna De Luca,20 Valentina Tomassini,21,22 Massimiliano Calabrese,23 Angela Borrelli,24 Damiano Paolicelli,25 Giorgia Teresa Maniscalco,26 Paola Gazzola,27 Antonio Gallo,28 Claudio Solaro,27 Eleonora Cocco,29 Claudio Gasperini,30 Carla Tortorella31 On behalf of the RIREMS (Rising Researchers in MS) group

1Clinica Neurologica, Dipartimento di Medicina e Chirurgia, University of Perugia, Perugia, Umbria, Italy
2Centro Sclerosi Multipla, ASST Spedali Civili di Brescia, Ospedale di Montichiari, Brescia, Italy
3A.O.U. Centro Sclerosi Multipla, San Luigi Gonzaga, Orbassano, Italy
4O.O.C. Centro Sclerosi Multipla, ASST Valle Ola, Gallarate, Italy
5Centro Sclerosi Multipla e Neurologia 1 D.U, Dipartimento di Neuroscienze e Salute Mentale, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
6Centro Sclerosi Multipla, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Dipartimento di Neuroimmunologia e Malattie Neuromuscolari, Milan, Italy
7Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Palermo, Italy
8Centro Sclerosi Multipla, Fondazione Policlinico Universitario Agostino Gemelli IRCCS – Università Cattolica del Sacro Cuore, Rome, Italy
9UOC di Neurologia, ASST Papa Giovanni XXIII, Bergamo, Italy
10Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica, Maternità e Infanzia Università di Genova, IRCCS Ospedale Policlinico San Martino, Genova, Italy
11Unità di Neurologia, IRCCS Neurmed, Pozzilli, Italy
12Centro Regionale Sclerosi Multipla, ASPL Cagliari, ATS Sardegna, Cagliari, Italy
13Centro Regionale Sclerosi Multipla, ASPL Cagliari, ATS Sardegna, Cagliari, Italy
14UOC Neurologia, Policlinico Universitario Tor Vergata, Rome, Italy
15Dipartimento di Neuroscienze e Scienze Riproductive ed Odontostomatologiche, Università degli Studi Federico II, Naples, Italy
16Dipartimento di Scienze Cliniche e Biologiche dell’Università di Torino, AOU San Luigi Gonzaga di Orbassano, Orbassano, Italy
17Centro Sclerosi Multipla Clinica Neurologica, Ospedale Universitario SS Annunziate, Chieti, Italy
18Istituto di Tecnologie Avanzate Biomediche (ITAB), Dipartimento di Neuroscienze, Imaging e Scienze Cliniche, Facolta’ di Medicina e Chirurgia, Universita’ di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy
19Centro Sclerosi Multipla, Universita’ di Verona, Verona, Italy
20Clinica Neurologica, Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy
21Dipartimento di Scienze Mediche di base, Neuroscienze ed Organi di Senso, Università degli Studi di Bari Aldo Moro, Bari, Italy
22Ospedale “A. Cardarelli”, Dipartimento Emergenza Accettatura, Neurologia, Centro Regionale per la Sclerosi Multipla, Naples, Italy
23Centro Dipartimentale diagnostico ed cura delle malattie demielinizzanti, Dipartimento Testa Collo, ASL3 Ospedale P.A. Micone, Genova, Italy
24Dipartimento di Scienze Mediche e Chirurgiche Avanzate, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
25Unità di Neuromielopatia, Ospedale Mons. L. Novarese, Moncrivello, Italy
26Centro Regionale Sclerosi Multipla, ASGL Cagliari, ATS Sardegna, Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, Cagliari, Italy
27Correspondence to Prof. Massimiliano Di Filippo, Clinica Neurologica, Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Perugia, Italy, University of Perugia, Perugia, Umbria, Italy; massimiliano.difilippo@unipg.it

Acknowledgements MDF and AB thank Lorenzo Gaetani for critically reading the manuscript and useful suggestions. GC and Novartis. RF, all the staff members at the ‘Centro Sclerosi Multipla, Azienda Ospedaliera Ospedali Civili – Brescia, IT’ for data collection at their clinical site.

Contributors MDF and CT conceived the study. All authors provided clinical data of patients and contributed to the writing of the manuscript and approved its final version. MDF, AB and CT prepared the draft of the manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests MDF participated on advisory boards for and received speaker and writing honoraria and funding for traveling from Bayer, Biogen Idec, Genzyme, Merck, Mylan, Novartis, Roche and Teva.

Ethics approval The study was approved by the local ethics committee (CER Umbria: number 3951/21).

Patient consent for publication Not required.

Ethics approval The study was approved by the local ethics committee (CER Umbria: number 3951/21).

Provenance and peer review Not commissioned; externally peer reviewed.

Funding This article is freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

Copyright © 2021 BMJ Publishing Group Ltd

To cite Di Filippo M, Cordioli C, Malucchi S, et al. J Neurol Neurosurg Psychiatry Epub ahead of print:
REFERENCES


