Practice effects in genetic frontotemporal dementia and at-risk individuals: a GENFI study

INTRODUCTION
Frontotemporal dementia (FTD) is a heterogeneous group of neurodegenerative diseases with an onset usually before the age of 65 years even if it can appear also in older ages.1 On cognitive tests, patients with FTD show deficits in executive functions, social cognition and language, whereas the initial performances in memory and visuoconstruction tasks usually are preserved.3 The general approach to detect cognitive decline in dementia is to repeat cognitive testing and observe changes over time. However, exposure to similar tasks could improve performance as the individual gets familiar with both the tasks themselves and the test setting (ie, practice effect or learning effect).2

Different attempts to adjust for practice effects in repeated testing have been proposed.4 However, recent research suggests that the phenomenon of practice effects can provide useful information. Patients with neurological and psychiatric conditions show lower practice effects than healthy controls, and individuals with mild cognitive impairment (MCI) that do not show practice effects are more likely to develop Alzheimer disease (AD) within a year than individuals with MCI that have preserved practice effects.5 In addition to the findings of lower practice effects in patients with dementia, Hassenstab et al6 found that preclinical individuals who later progressed to AD had substantially reduced practice effects in episodic memory compared with cognitively stable individuals. Thus, absence of practice effects might serve as an early marker for cognitive decline.

To our knowledge, practice effects have never been investigated in FTD before. The aim of this study was to examine practice effects in the GENetic Frontotemporal dementia Initiative (GENFI) cohort. More specifically, we investigated whether there is a difference in practice effects between presymptomatic mutation carriers (PMC) and mutation non-carriers (NC).

MATERIALS AND METHODS
Participants
All participants (317 NC, 327 PMC and 159 affected mutation carriers (AMC)) were recruited through GENFI from January 2012 to March 2018 (online supplemental table 1). Of the 803 participants, 471 had two visits; 249 had three visits; and 108 had four visits. After the fourth visit, the number of participants rapidly decreased and only 12 had six test occasions (online supplemental figure 1).

Statistics
A global cognitive score was calculated including the mean z-scores of all tests in the standardised GENFI neuropsychological battery. Additionally, practice effects for different cognitive domains were explored. A linear mixed-effects model was applied to examine potential practice effects. Further details including neuropsychological tests, composite score calculation and model selection criteria are described in the online supplemental materials.

RESULTS
Practice effects
An increase in mean global cognitive test scores was seen in NC over the first five visits (online supplemental figure 2). When investigating different cognitive domains, practice effects were found across visits 1–3 in all domains except for visuoconstruction (online supplemental table 2). The largest practice effect was observed in memory and social cognition. After the third visit, there was a plateau, and the practice effects between visits 3 and 4 as well as visits 4 and 5 were not statistically significant.

In contrast, a progressive decline in the mean global score was identified longitudinally in AMC, as could be expected (online supplemental figure 2). PMC carrying a C9orf72 expansion and with less than 5 years to expected symptom onset (PMC-C9 in proximity to onset) showed no practice effect on their global test score and had the same mean performance at all three visits (figure 1A and online supplemental table 3). Furthermore, PMC-C9 with more than 5 years to expected onset had a lower practice effect between visits 1 and 2 than NC; however, the total practice effect (visits 1–3) was not significantly different from NC.

Similar to PMC-C9, there was a lower practice effect across visits 1–3 in PMC with a progranulin (GRN) mutation in proximity to onset compared with NC. However, PMC-GRN in proximity to onset appear to initially have a practice effect but subsequently do not improve their performance at the third visit (figure 1B).

PMC with a MAPT mutation (PMCMAPT) had a similar trajectory in mean cognitive test score across visits 1–3 as NC (figure 1C).

DISCUSSION
In this study, we explored practice effects due to repeated cognitive assessments in a large cohort of individuals with genetic presymptomatic or symptomatic FTD as well as non-mutation carrier family members. Practice effects have been
suggested to provide useful information of the progression of cognitive decline but have never been studied in the context of FTD before. Compared with their baseline line test scores, NC improved in global cognition at each visit (visits 2 and 3). Presymptomatic individuals carrying the C9orf72 expansion or a GRN mutation had significantly lower practice effects than NC, and this difference was most apparent in PMC-C9 within 5 years of expected symptom onset. However, it is not possible to know if the stable performance over time in PMC in proximity to onset is due to lower practice effects per se or an actual cognitive decline that is masked by practice effects. The question of genuine practice effects applies also to AMC, who showed a progressive decline in global cognitive test scores at each visit. The scores measured after repeated testing in AMC might include a ‘hidden’ practice effect, and therefore the true cognitive dysfunction would in fact be greater than what was captured in the test scores. Cognitive functions in FTD are expected to decline over the test interval used in this study (mean 1.3 years). Consequently, a potential absence of practice effects in clinical FTD, as reported in AD,1 cannot be evaluated with the current setup but could be addressed if the retest is performed within days or weeks of the first assessment. Besides the PMC in proximity to onset, also PMC-C9 with more than 5 years to expected symptom onset had lower practice effects than NC which could not be explained by early conversion into a symptomatic stage. Progression of brain atrophy in C9orf72 expansion carriers can be slow, and some patients have been described with a remarkably long disease duration.11 Pathological changes in the brain of C9orf72 expansion carriers are present already in early adulthood, and the potential neurodevelopmental effects could lead to a long prodromal phase in PMC-C9. Previous findings show that cognitive performance in PMC is not different from NC until very close to the disease onset,12 which is in line with the results of the current study. Nevertheless, an inability to use acquired skills from previous tests might be a marker for very early disease development in PMC-C9. However, the diagnostic potential of practice effects and whether they can be used for differentiating PMC-C9 from NC are yet to be explored.

As the field of FTD research is greatly evolving and treatment opportunities are emerging, knowledge about different stages of the disease is highly required. As we are preparing for clinical trials, several initiatives have been searching for both fluid biomarkers as surrogate endpoints as well as clinical and neuropsychological tests used to evaluate a future treatment response. Practice effects can have implications for the interpretation of longitudinal changes in cognitive performance as it could impact estimations of treatment effects after an intervention, particularly early in the disease course. Furthermore, one could speculate that identifying individuals with lower-than-expected practice effects would be a cost-effective approach for inclusion into clinical trials.13 The presence of practice effects should thus be considered in future clinical trials especially if neuropsychological measures are included as end points.

Linn Öijerstedt,1,2,3,4 Christina Andresson,3,4 Vesna Jelic,1 John Cornelis van Swieten,3,5 Lize C Jiskoot,1,6 Harro Seelaar,7,8 Barbara Borroni,9,10 Raquel Sanchez-Valle,11,12 Fermin Moreno,11,12 Robert Lafource Jr,1,6 Matthijs Synofzik,11,12 Daniela Galimberti,13,14 James Benedict Rowe,15 Mario Maselli,16 Maria Carmela Tartaglia,17 Elizabeth Figner,18 Rik Vandenbroucke,19,20 Alexandre de Mendonca,21 Fabrizio Tagliavini,22 Isabel Santana,22,23 Simon Ducharme,3,24 Christopher R Butler,25,26 Alexander Gerhard,27,28,29,30,31,32,33,34,35,36,37 Jonathan Daniel Rohrer19,24,38 Caroline Graff,19,39,40 Genetic Frontotemporal Dementia Initiative (GENFI)

1Department of Neurobiology, Care Sciences and Society, Neurogeriatrics, Karolinska Institute, Stockholm, Sweden
2Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Stockholm, Sweden
3Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
4Department of Medical Psychology, Karolinska University Hospital, Stockholm, Sweden
5Neurology, Erasmus MC, Rotterdam, Netherlands
6Centre for Ageing Brain and Neuropsychiatric Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
7Alzheimer’s Disease and Other Cognitive Disorders Unit, Department of Clinical Neurosciences, University of Toronto, Toronto, Canada
8Cognitive Disorders Unit, University of Cambridge, Cambridge, UK
9Department of Clinical Neurosciences, University of Toronto, Toronto, Ontario, Canada
10Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
11Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
12Neurology Service, KU Leuven University Hospitals Leuven, Leuven, Belgium
13Faculty of Medicine, University of Lisbon, Lisboa, Portugal
14Fondazione IRCCS, Istituto Nazionale Neurologico Carlo Besta, Milano, Italy
15Neurology Service, Faculty of Medicine, Hospital and University Centre of Coimbra, Coimbra, Portugal
16Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
17Department of Psychiatry, McGill University Health Centre, Montreal, Quebec, Canada
18McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
19Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
20Brain Sciences, Imperial College London, London, UK
21Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK
22Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Duisburg, Germany
23Neurologische Klinik, Ludwig Maximilians University Munich, Munich, Germany
24German Centre for Neurodegenerative Diseases, Munich, Germany
25Neurology, University of Ulm, Ulm, Germany
26IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
27Molecular Markers Lab, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
28Neurofarba, University of Florence, Firenze, Italy
29IRCCS Firenze, Fondazione Don Carlo Gnocchi Onlus, Firenze, Italy
30Neuropathological Center, UCL Institute of Neurology, London, UK
31Correspondence to Dr Linn Öijerstedt, Department of Neurobiology, Care Sciences and Society, Neurogeriatrics, Karolinska Institute, Stockholm, Sweden; linn.oijerstedt@ki.se
32Correction notice This article has been corrected since it was first published online. The ‘Results’ heading has been added in the text.
33Twitter Harro Seelaar @HarroSeelaar and Simon Ducharme @sdsucharme66
34Acknowledgements We thank all the participants and their families for contributing to the study, and also the Genetic Frontotemporal Dementia Initiative research coordinators, especially Catharina Roman and Nathalie Asperlin, at the Stockholm site, who helped with arranging the visits.
35Collaborators Genetic Frontotemporal Dementia Initiative (GENFI): Sónia Afonso (Instituto Ciencias Nucleares Aplicadas a Saude, Universidade de Coimbra, Coimbra, Portugal), Maria Rosario Almeida (Faculty of Medicine, University of Coimbra, Coimbra, Portugal), Sarah Anders-Staub (Department of Neurology, University of Ulm, Ulm, Germany), Anna Antonell (Alzheimer’s disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Barcelona, Spain), Silvana Archetti (Biotechnology Laboratory, Department of Diagnostics, ASST Brescia Hospital,
Maria & Faculty of Medicine, University of Lisbon, Lisbon, Portugal, Jorge Villanua (OSATEK, University of Donostia, San Sebastian, Gipuzkoa, Spain), Jason Warren (Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK), Carlo Wilke Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany; Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany), Ione Woollacott (Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK), Elisabeth Wasch (Neurologische Klinik, Ludwig-Maximilians-Universität München, Munich, Germany), Henrik Zetterberg (Dementia Research Institute, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK), Miren Zulaica (Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain).

Contributors LÖ contributed to study coordination and acquisition, analysis, visualisation and interpretation of the data, as well as drafting and revision of the manuscript. CA and CG contributed to the study design, acquisition and interpretation of the data, and revision of the manuscript. JDR contributed to the study design, acquisition of data and revision of the manuscript. VJ, JCvS, LCJ, HS, BB, RSV, FM, RL, MS, DG, JBR, MM, MCT, EF, AdM, FT, IS, SD, CRB, AG, JL, AD, MO, GBF, RG and SS contributed to the acquisition of data and study coordination, and critically reviewed the manuscript. CA and CG contributed to the acquisition, interpretation of the data, as well as drafting and revision of the manuscript. JDR contributed to the study design, acquisition of data and revision of the manuscript. VI, JCvS, LCI, HS, BB, RSV, FM, RL, MS, DG, JBR, MM, MCT, EF, AdM, FT, IS, SD, CRB, AG, JL, AD, MO, GBF, RG and SS contributed to the acquisition of data and study coordination, and critically reviewed and revised the manuscript.

Funding This work was supported by grants from SRC/VR S29-2014-7504, VR 2015-02926, VR 2018-02754, VR 2019-02248. IPND GENFI-PROX, the Swedish FTD Initiative-Schörling Foundation, Swedish Alzheimer Foundation, Swedish Brain Foundation, Demensfonden, Stohnes foundation, Gamla Tjänarinnor, Karolinska Institutet Doctoral funding and ALF-Region Stockholm. This work was also supported by the MRC UK GENFI grant (MR/M023664/1), the Bluefield Project, the IPND GENFI-PROX grant (2019-02248), the Dioraphite Foundation (grant numbers 09-02-00); the Association for Fronto temporal Dementias Research Grant 2009; The Netherlands Organization for Scientific Research (grant HCM 056-13-018); ZonMW Memorebel (Delteplan Demente, project numbers 733 050 103 and 733 050 813); and IPND PefrontIALs consortium (project number 733051042). JDR was supported by an MRC Clinician Scientist Fellowship (BRC149/NS/MH). Several authors of this publication are members of the European Reference Network for Rare Neurological Diseases (Project ID No 739510).

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval Local ethics committees at each site approved the study, and all participants provided written informed consent at enrolment.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work, non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

► Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi.org/10.1136/jnnp-2021-327005).

REFERENCES

