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All those who underwent Sanger sequencing had the mutation 
confirmed, however, two of the N370S carriers have not yet had 
Sanger sequencing. The numbers with other monogenetic forms 
of PD such as PRKN, SNCA and PINK1 were too small to draw 
any conclusions, see discussion.

Statistical analysis
We tabulated the clusters against LRRK2 and GBA status using 
a Fisher’s exact test (since the frequencies are very small in 
some cells due to the rarity of these mutations) to determine the 
strength of any association.

We calculated the probability of belonging to a cluster from 
the discriminant analysis model from our validated subtypes 
paper.10 This probability was converted to log odds to give a 
more suitable continuous score for linear regression (unbounded 
range and symmetrical).

In an attempt to assess the potential for selection bias we 
compared age (t-test), gender and cluster assignment (χ2 test) for 
those who did and did not have genetic data from the SNP arrays 
after quality control.

We calculated GRS for PD, PSP, MSA, LBD and AD by multi-
plying the genome wide significant SNPs (p<5×10e-8) by their 
beta coefficients taken from each external GWAS and then stan-
dardising the score. This GRS can be interpreted as an estimate of 
the contribution of genetics to developing one of these diseases.27 
Since the MSA GWAS did not find any genome wide significant 
SNPs we used those reported at a threshold of  <1×10e-6 to 
calculate the GRS20 and in Alzheimer’s we used two variants that 
were from previously reported genome-wide significant loci but 
did not reach significance in the current GWAS.22 The number of 
SNPs from each GRS are reported in online supplemental table 
1, which are the number of SNPs reaching the thresholds speci-
fied above in each external GWAS that were also available in our 
genetic data. Then we used linear regression with log odds of 
belonging to a cluster as the outcome and each GRS as the expo-
sure. This was carried out separately within each cohort and then 
the results were combined using a fixed effects meta-analysis. We 
used a false discovery rate method,28 often called the Benjamini-
Hochberg method, to control for multiple comparisons across 
the four subtypes.11 Using this method in our GRS analyses we 
have derived q-values. If our significance threshold was 0.05 we 
would hope to find q values <0.05. These q-values do not have a 
simple probabilistic interpretation, it is only important whether 
they reach the chosen threshold. The authors are aware of prob-
lems using corrections to p values29 and focusing on statistical 
significance at an arbitrary 0.05 threshold.30 31 We have tried 
to not use language like significant and non-significant, instead 
p values should be viewed by the reader as a continuum where 
smaller p values represent greater evidence against the null 
hypothesis and confidence intervals should be examined for the 
strength of any association. In the results, we have pointed out 
the direction of some associations and using the derived p values 
and q-values the reader can decide for themselves the strength 
of evidence against the null hypothesis. We hope this approach 
will promote modern thinking that arbitrary p value thresholds 
are unhelpful.

We carried out a GWAS with linear regression using the logs 
odds of belonging to a cluster as the outcome. The first five 
genetic PCs were used as covariates for each regression. Only 
SNPs with a minor allele frequency (MAF) >0.05 were included. 
The data were combined using a fixed effects meta-analysis. We 
also computed the expected power for our sample size32 for a 

range of beta and MAFs. The number of SNPs within the GWAS 
are reported in the online supplemental file 1.

Palindromic SNPs (where the alleles are nucleotides that pair 
to each other making it difficult to determine the direction of 
effect) that had an MAF >0.45 were excluded when calculating 
the GRS and also from the GWAS.

RESULTS
Demographics and potential for selection bias
After all the quality control procedures, we had genetic data 
on 1467 derived from 1601 (91.6%) individuals from the orig-
inal Tracking cluster analysis. Average age (67.2 vs 68.0 with 
p=0.31) and gender rates (34.2% vs 34.3% female with p=0.97) 
were similar in those with and without genetic data (respec-
tively). Looking within clusters rates of those included varied 
from 96.8% (cluster 4) to 88.6% (cluster 1) with a p=0.001. 
For those with genetic data there were 437, 423, 304 and 303 
individuals in clusters 1–4, respectively.

In the Oxford Discovery cohort, we had genetic data on 807 
individuals, out of 944 (85.5%) individuals from the cluster 
analysis. Within Oxford Discovery average age (67.4 vs 66.1 
with p=0.15) and gender rates (34.3% vs 41.6% female with 
p=0.099) were similar in those with and without genetic data 
(respectively). Looking within clusters rates of those included 
varied from 87.5% (cluster 4) to 83.0% (cluster 3) with a p 
=value 0.53. For those with genetic data there were 261, 145, 
185 and 216 individuals in clusters 1–4, respectively.

Mutation carriers
Table 1 shows the associations between LRRK2 and GBA muta-
tion carriers against the clusters in both cohorts. In the Tracking 
cohort the third cluster (severe motor disease and poor psycho-
logical well-being) had the largest proportion of LRRK2 carriers 
(1.9%), however, this is not replicated in Oxford Discovery 
where the third cluster has no carriers. The combined cohort p 
value of LRRK2 vs the clusters was p=0.35.

Within the Tracking cohort the third disease cluster (severe 
motor disease and poor psychological well-being) had the 
greatest proportion of GBA carriers (12.9% across both carrier 
groups) and the second disease cluster (mild motor and non-
motor disease) had the lowest proportion of GBA carriers 
(6.3%). This trend was also seen in Oxford Discovery cohort 
(11.3% in cluster 3 vs 6.6% in cluster 2). In the combined 
cohorts a p value for a difference in GBA carrier rates across the 
clusters was p=0.036, and when combining the two GBA carrier 
groups the p value was smaller at p=0.009.

Genetic risk of diseases
Genetic PD risk (see figure  1) is positively associated with 
belonging to clusters 2 (mild motor and non-motor disease) 
(pooled p=0.044 and q=0.059) and 4 (slow motor progres-
sion), (pooled p=0.021 and q=0.043), while it is negatively 
associated with belonging to cluster 3 (severe motor disease and 
poor psychological well-being) (p=0.004 and q=0.015). For the 
pooled associations a one SD change in the PD GRS was associ-
ated with a 0.2 (95% CI 0.00 to 0.39) increase in the log odds 
of belonging to cluster 2; 0.2 (95% CI 0.03 to 0.37) increase for 
cluster 4 and a 0.3 (95% CI 0.10 to 0.51) decrease for cluster 3. 
We also explored a sensitivity analysis where we adjusted for the 
GBA mutation carrier groups and found very similar results (see 
online supplemental figure 1).

We can see in figure  2 that within the Oxford Discovery 
cohort genetic PSP risk is negatively associated with cluster 2 
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(mild motor and non-motor disease) (p=0.006 and q=0.024) 
and positively associated with cluster 3 (severe motor disease 
and poor psychological well-being) (p=0.014 and q=0.027). 
However within the Tracking cohort the association between 
PSP with cluster 2 (mild motor and non-motor disease) is much 
smaller (-0.04 vs −0.42) and for cluster 3 (severe motor disease) it 
is within the opposite direction (-0.12 vs 0.41). When compared 
with the Oxford Discovery cohort the pooled p values and q 
values are much larger for both cluster 2 (p=0.046 and q=0.18) 
and cluster 3 (p=0.38 and q=0.70). Also within figure 2, we can 
see that genetic MSA risk is negatively associated with belonging 
to cluster 4 (slow motor progression) (pooled p=0.020 and 
q=0.079) where a 1 SD change in the GRS was associated with a 
0.20 (95% CI 0.03 to 0.37) decrease in the log odds of belonging 
to cluster 4.

In figure 3, we can see that the associations of the clusters with 
genetic risk of LBD and AD look very similar (especially for clus-
ters 1, 2 and 4). Cluster 2 (mild motor and non-motor disease) 
is inversely associated with both LBD and AD in Tracking but 
not within Oxford Discovery. Within the AD GWAS the APOE 
genetic variant has an effect size much higher than all the 

others (OR of 3.32 compared with an average of 1.27 when 
the direction of effect is coded as positive) so we also explored 
what would happen when that variant is removed (see online 
supplemental figure 2). When removing this variant cluster 1 
(fast motor progression) is positively associated with AD (pooled 
p=0.063 and q=0.25) where a one SD change in the GRS was 
associated with a 0.13 (−0.01 to 0.28) increase in the log odds 
of belonging to cluster 1.

Genome Wide Association Study
There was little evidence of population stratification since within 
the four GWAS analyses from Tracking, the genomic inflation 
factor lambda varied from 1.001 to 1.008, while within Oxford 
Discovery they were all 1.0.

We highlight the power we have to detect a genome wide 
significant variant given our sample size in online supplemental 
table 2. Generally our power is small to detect rare variants with 
high effect sizes or common variants with small effect sizes. Since 
we found no genome wide significant variants in table  2 we 
highlight (non-independent) variants that reached a threshold 
of  <1×10e-6, similar to the MSA GWAS study.20 At this 
threshold we identified 3 SNPs that were associated with cluster 
1. The QQ-plot for this cluster (see online supplemental figure 
3) shows a hump at the upper end which implies an excess of 
genetic variants associated with phenotypic cluster 1 at lower p 
value levels (0.0001–0.000001). We had one SNP at the reduced 
threshold for cluster 3 and none for clusters 2 and 4. None of 
the other QQ-plots (see online supplemental figures 4–6) show 
evidence of there being an excess of variants associated with any 
phenotypic cluster. The cohort specific results from table 2 can 
be found in online supplemental table 3). In the online supple-
mental file 1 the biological relevance of the identified SNPs are 
reported along with some network analyses (none of which met 
a threshold of Bonferroni adjusted-value of 0.05 shown in online 
supplemental figures 7–10).

DISCUSSION
The associations between GBA and the phenotypic clusters, with 
a severe disease cluster having the greatest proportion of carriers 

Table 1  Data-derived clusters compared with LRRK2 and GBA mutation status

 �

LRRK2  �  GBA

Non-carriers Carriers  �  Non-carriers E326K and T369M carriers GD-causing variants

Tracking Parkinson’s cohort

Cluster 1 469 (99.8%) 1 (0.2%) Cluster 1 437 (91.8%) 29 (6.1%) 10 (2.1%)

Cluster 2 432 (99.1%) 4 (0.9%) Cluster 2 413 (93.7%) 20 (4.5%) 8 (1.8%)

Cluster 3 314 (98.1%) 6 (1.9%) Cluster 3 282 (87.0%) 27 (8.3%) 15 (4.6%)

Cluster 4 304 (99.7%) 1 (0.3%) Cluster 4 280 (90.9%) 20 (6.5%) 8 (2.6%)

P=0.059 P=0.080

 �  P value (GBA variants combined)=0.018

Oxford discovery cohort

Cluster 1 280 (99.3%) 2 (0.7%) Cluster 1 231 (90.9%) 15 (5.9%) 8 (3.2%)

Cluster 2 150 (98.7%) 2 (1.3%) Cluster 2 127 (93.4%) 8 (5.9%) 1 (0.7%)

Cluster 3 204 (100%) 0 Cluster 3 158 (88.8%) 14 (7.9%) 6 (3.4%)

Cluster 4 221 (99.1%) 2 (0.9%) Cluster 4 185 (90.7%) 16 (7.8%) 3 (1.5%)

P=0.45 P=0.57

 �  P value (GBA variants combined)=0.59

Combined cohort  �

Combined cohort p=0.35 Combined cohort p=0.036

 �  Combined cohort p value (GBA variants combined)=0.009

Note the numbers in this table are slightly different to the numbers in the other analyses since the mutation status did not come from the imputed array data.
GBA, glucocerebrosidase; GD, Gaucher’s disease; LRRK2, leucine-rich repeat kinase 2.

Figure 1  Genetic risk of Parkinson’s disease (PD) versus likelihood of 
belonging to a cluster.
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and a mild disease cluster having the smallest proportion, are 
what would be expected given the observational evidence that 
GBA mutations are associated with higher Hoehn and Yahr stage 
and worse cognition.33–36 GD-causing and GBA risk variants 
such as E365K (E326K) have also been associated with more 
rapid motor and cognitive impairment in PD in other studies.37 
This has been hypothesised to relate to lysosomal dysfunction 
and the more rapid accumulation of pathogenic alpha-synuclein 
species in patients with carrying GBA variants.38 However, there 
are also reports that GBA mutations are associated with earlier 
disease onset while cluster 3 has the most GBA mutations and a 
higher than average age at diagnosis and cluster 2 has the least 
GBA mutations and the lowest average age at diagnosis.10 This 
highlights that there is still heterogeneity of disease onset within 
the clusters and that GBA mutation carriers are only a small 
proportion (~12%) of even the cluster with the highest carrier 
rate. We hypothesise that other similar genetic variants are asso-
ciated with the severe disease cluster that may relate to impaired 
proteostasis and/or lysosomal dysfunction.

There is also heterogeneity of clinical phenotype within 
LRRK2 carriers which would make it difficult to correlate them 
with clusters. One study showed that mutations of the LRRK2 
gene are associated with less cognitive impairment compared 
with iPD39 while others have failed to confirm this.40 41 A 
study of LRRK2 found a slower decline in UPDRS scores42 and 

another found no discernible effect on rate of motor disease 
progression.43

There are several possible explanations for the negative asso-
ciation between genetic risk of PD and the third, severe disease 
cluster. The first is that the individuals in this cluster have a more 
environmental and less genetically driven disease aetiology. The 
second is that this cluster is enriched with non-PD cases although 
the MSA and PSP genetic risk pooled associations do not support 
this, and it would also require that the PD GWAS studies had 
no enrichment of other similar conditions. The third is one of 
selection bias, in that these severe disease cases are less likely to 
participate in the PD cohorts that supply cases to the PD GWAS 
study we used, as compared with Oxford Discovery and Tracking 
cohorts which offered local clinical review for the majority of 
research participants. This PD GWAS study used data from 17 
different datasets.19 Note that the GRS came from the imputed 
genetic data which excludes rarer genetic variants such as those 
within the GBA gene. The severe disease cluster has low genetic 
risk of PD looking at common variants yet the rare GBA variants 
have the highest frequency within this cluster.

We have data on other monogenetic forms of Parkinson’s 
(SNCA, PRKN and PINK1) and have published this data from 
the Tracking cohort.24 However, the numbers are too small to 
draw any conclusions against our clusters. Only one individual 
from the Tracking clusters have a biallelic PINK1 mutation, none 

Figure 3  Genetic risk of dementia: Alzheimer’s disease and Lewy body dementia (LBD). PD, Parkinson’s disease.

Figure 2  Genetic risk of atypical Parkinson’s: progressive supranuclear palsy (PSP) and multiple system atrophy (MSA).
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had a biallelic PRKN mutation and only one a SNCA mutation. 
In the Oxford Discovery cohort, we have data within these genes 
from the Neurochip but again the numbers are too small to draw 
any conclusions, no one from the cluster analysis had a SNCA or 
a biallelic PRKN mutation and only one individual had a biallelic 
PINK1 mutation.

The negative association between genetic risk of PSP and 
cluster 2 and the positive association with cluster 3 in the Oxford 
Discovery cohort is what we would expect to see if there was 
enrichment of PSP cases. That is, PSP cases are more likely to 
belong to a severe motor disease cluster than a mild motor and 
non-motor disease cluster. However, this is not backed up by the 
associations within the larger Tracking cohort. This could repre-
sent a chance finding in Oxford Discovery. Alternatively, it could 
reflect the procedure we used to exclude patients from the anal-
ysis, that is dropping those with probability of diagnosis of PD 
of <90% at the latest clinic visit. In Tracking 367/1975 (18.6%) 
were dropped, while in Oxford Discovery only 76/1022 (7.4%) 
were dropped using this criterion (see online supplemental 
figure 1 in the original paper10). Since a greater proportion were 
dropped in Tracking it is more likely that we have excluded PSP 
cases from this cohort. The reported PD disease probability 
would, in all likelihood, be reduced if the clinician documented 
features consistent with atypical parkinsonism during the clin-
ical review, including the presence of symmetrical motor disease, 
early onset falls, suboptimal levodopa response, a supranuclear 
gaze palsy or early autonomic failure.

In previous research, we found cluster 3 was associated with 
a higher proinflammatory baseline profile (raised CRP, reduced 
apolipoprotein A1). This is interesting, as it suggests that in PD 
subtype 3—who have greater rates of cognitive dysfunction—
early immune modulation might improve clinical outcomes, for 
example, by reducing future dementia risk if commenced early 
enough in the disease process. The lower overall genetic risk of 
PD and a higher pro-inflammatory profile in this cluster, are 
consistent with a hypothesis that the aetiology of this cluster is 
more driven by environmental rather than genetic risk factors.

Although none of our individual variants met the GWAS p 
value significance threshold the ones that we highlight might be 
interesting for future follow-up and research. It could be that 
the variants, or closest genes to these variants, are a reason that a 
person develops a particular subtype of Parkinson’s.

In previous research, we used multinomial logistic regression 
to look at how blood biomarkers are associated with an indi-
vidual belonging to one of the clusters.11 For this genetic anal-
ysis, we decided to simplify the analyses by carrying out four 
separate analyses using the probability of belonging to the cluster 
as the outcome. This made the GWAS easier to run and interpret 
with fewer variables to estimate.

The strengths of this study are we have used two large early 
in the disease course and well-phenotyped PD cohorts. Our 
subtypes were created using large amounts of phenotypic data 
incorporating 21 variables across 12 important domains and 
these subtypes were developed and validated in over 2500 
subjects. These subtypes were shown to be associated with both 
motor progression and medication response in a levodopa chal-
lenge. The limitations of this study are that in terms of searching 
for individual genetic variants it is still too small to find any 
that reach genome wide significance, assuming that such vari-
ants exist. Also there is the possibility of selection bias as rates 
of those with genetic data varied by cluster within the Tracking 
cohort. The frequency of PD subtypes in our cohorts may be 
different to that in the general PD population if belonging to a 
subtype was related to agreeing to take part in our cohorts or our 
cohorts failed to identify specific individuals during recruitment. 
However, to bias our estimates of genetics versus the clusters, it 
would require that selection into our cohorts was also related to 
an individual’s genetics. Diagnosis of PD will not be perfect and 
some patients will turn out to have other parkinsonian disorders, 
although we have attempted to mitigate this by excluding indi-
viduals with a diagnostic probability of PD <90% at the latest 
visit.

There are other subtypes that have been defined by a data-
driven cluster analysis on motor and non-motor symptomatic 
data. Currently, it is difficult to determine whether the cluster 
definition we have used is more robust or superior to other 
definitions. However, in a recent systematic review our paper 
was rated (among 25 other data-driven studies) along with two 
others as having the highest methodological quality and clinical 
applicability.2 What sets our cluster definition apart is our use of 
an external validation.

Future work is now ongoing to understand the underlying 
disease pathophysiology driving these different clinical clusters 
in early PD, and their subsequent progression. This will use a 
mechanistic approach comparing lysosomal, mitochondrial, 
inflammatory function, α-synuclein (α-syn) seeding amplifica-
tion44 and α-omics profiles across the four PD clinical clusters.

The differences in genetics between these clusters lends 
biological validity to our data-driven clustering approach while 
also providing evidence that the different subtypes can inform 
on underlying disease mechanisms and pathogenesis, as well as 
informing individual disease trajectories in PD.
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