Plasma biomarkers for Alzheimer’s disease: a field-test in a memory clinic

Daniele Altomare*, PhD; Sara Stampacchia*, PhD; Federica Ribaldi, PhD; Szymon Tomczyk, PhD; Claire Chevalier, PhD; Géraldine Poulain, MS; Saina Asadi, MS; Bianca Bancila, MS; Moira Marizzoni, PhD; Marta Martins, MS; Aurelien Lathuiliere, MD, PhD; Max Scheffler, MD; Nicholas J. Ashton, PhD; Henrik Zetterberg, MD, PhD; Kaj Blennow, MD; Ilse Kern, MD, PhD; Miguel Frias, PhD; Valentina Garibotto, MD; Giovanni B. Frisoni, MD

*These authors contributed equally to this work (shared first author).

CONTENT

Table S1. Demographic and clinical features of each subsample of participants with biomarkers assessed through plasma and at least one traditional exam (i.e. PET, CSF, MRI, or FDG-PET).

Figure S1. Correlations between plasma and traditional amyloid biomarkers (i.e. amyloid-PET and CSF Aβ42).

Figure S2. Correlations between plasma and traditional tau biomarkers (i.e. tau-PET and CSF p-tau181).

Figure S3. Correlations between plasma and traditional neurodegeneration biomarkers (i.e. hippocampal volume, and FDG-PET).

Figure S4. Diagnostic accuracy of plasma biomarkers over homologous traditional biomarkers.

Figure S5. Test-retest variability of plasma p-tau181 and plasma NfL.
Table S1. Demographic and clinical features of each subsample of participants with biomarkers assessed through plasma and at least one traditional exam (i.e. PET, CSF, MRI, or FDG-PET).

<table>
<thead>
<tr>
<th>Demographic and clinical features</th>
<th>Amyloid-PET n=142</th>
<th>Tau-PET n=105</th>
<th>MRI n=168</th>
<th>FDG-PET n=64</th>
<th>CSF n=51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>72 (9)</td>
<td>73 (9)</td>
<td>71 (12)</td>
<td>72 (9)</td>
<td>70 (10)</td>
</tr>
<tr>
<td>Gender, males</td>
<td>51% (72)</td>
<td>47% (49)</td>
<td>50% (84)</td>
<td>48% (31)</td>
<td>47% (24)</td>
</tr>
<tr>
<td>Education, years</td>
<td>14 (5)</td>
<td>14 (5)</td>
<td>15 (6)</td>
<td>14 (6)</td>
<td>15 (6)</td>
</tr>
<tr>
<td>CDR</td>
<td>0.5 (0.5) [19]</td>
<td>0.5 (0.1) [9]</td>
<td>0.5 (0.5) [39]</td>
<td>0.5 (0.0) [7]</td>
<td>0.5 (0.1) [11]</td>
</tr>
<tr>
<td>Cognitive stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>27% (39)</td>
<td>26% (27)</td>
<td>42% (71)</td>
<td>9% (6)</td>
<td>20% (10)</td>
</tr>
<tr>
<td>MCI</td>
<td>62% (88)</td>
<td>63% (66)</td>
<td>50% (84)</td>
<td>73% (47)</td>
<td>67% (34)</td>
</tr>
<tr>
<td>Dementia</td>
<td>11% (15)</td>
<td>11% (12)</td>
<td>8% (13)</td>
<td>17% (11)</td>
<td>14% (7)</td>
</tr>
</tbody>
</table>

Figure S1. Correlations between plasma and traditional amyloid biomarkers (i.e. amyloid-PET and CSF Aβ42).

One plasma p-tau₁₈₁/Aβ₄₂ value (24.0) was not displayed to improve data visualization (but was included in the analyses). Pearson’s r and its confidence intervals are reported for each correlation.
Figure S2. Correlations between plasma and traditional tau biomarkers (i.e. tau-PET and CSF p-tau\textsubscript{181}).

SUVr: standardized uptake value ratio.

One plasma p-tau\textsubscript{181}/\textit{Aβ}_{42} value (24.0) was not displayed to improve data visualization (but was included in the analyses). Pearson’s r and its confidence intervals are reported for each correlation.
Figure S3. Correlations between plasma and traditional neurodegeneration biomarkers (i.e. hippocampal volume, and FDG-PET).

Two plasma NfL values (188.1 pg/ml and 260.1 pg/ml) were not displayed to improve data visualization (but were included in the analyses). Pearson’s r and its confidence intervals are reported for each correlation.
Figure S4. Diagnostic accuracy of plasma biomarkers over homologous traditional biomarkers.

- **Amyloid-PET**
- **CSF Aβ₄₂**
- **Tau-PET**
- **CSF p-tau₁₈₁**
- **MRI MTA score**
- **FDG-PET**
Amyloid-PET positivity: visual reading. CSF Aβ42 positivity: < 880.5 pg/ml.

Tau-PET positivity: Braak stages IV-VI. CSF p-tau181 positivity: > 80.5 pg/ml.

Figure S5. Test-retest variability of plasma p-tau$_{181}$ and plasma NfL.

Pearson’s r and its confidence intervals are reported for each correlation.