# Solid Mechanics Application Elements

From KratosWiki

(Difference between revisions)

Line 24: | Line 24: | ||

| 2D axi-symmetric | | 2D axi-symmetric | ||

| Triangles, Quadrilaterals | | Triangles, Quadrilaterals | ||

− | |-style="background:# | + | |-style="background:#caffaa;" |

| rowspan="3" | Large Displacements | | rowspan="3" | Large Displacements | ||

| [[TotalLagrangianElement]] | | [[TotalLagrangianElement]] | ||

Line 30: | Line 30: | ||

| rowspan="2" | 2D plane state / 3D | | rowspan="2" | 2D plane state / 3D | ||

| Triangles, Quadrilaterals | | Triangles, Quadrilaterals | ||

− | |-style="background:# | + | |-style="background:#caffaa;" |

| [[UpdatedLagrangianElement]] | | [[UpdatedLagrangianElement]] | ||

| Tetrahedra, Hexahedra, Prisms | | Tetrahedra, Hexahedra, Prisms | ||

− | |-style="background:# | + | |-style="background:#caffaa;" |

| [[AxisymUpdatedLagrangianElement]] | | [[AxisymUpdatedLagrangianElement]] | ||

| Elastic, Damage | | Elastic, Damage | ||

Line 48: | Line 48: | ||

!Dimension | !Dimension | ||

!Geometry | !Geometry | ||

− | |-style="background:# | + | |-style="background:#caffaa;" |

| rowspan="3" | Large Displacements | | rowspan="3" | Large Displacements | ||

| rowspan="2" | [[UpdatedLagrangianUPElement]] | | rowspan="2" | [[UpdatedLagrangianUPElement]] | ||

Line 54: | Line 54: | ||

| rowspan="2" | 2D plane state / 3D | | rowspan="2" | 2D plane state / 3D | ||

| Triangle2D3N | | Triangle2D3N | ||

− | |-style="background:# | + | |-style="background:#caffaa;" |

| Tetrahedra3D4N | | Tetrahedra3D4N | ||

− | |-style="background:# | + | |-style="background:#caffaa;" |

| [[AxisymUpdatedLagrangianUPElement]] | | [[AxisymUpdatedLagrangianUPElement]] | ||

| Elastic, HyperElastic, Plastic, Damage | | Elastic, HyperElastic, Plastic, Damage |

## Revision as of 16:59, 21 March 2016

#### Elements in the Solid Mechanics Application

This application implements only volumetric or surface finite elements. This is the 3D solids and the simplified 2D models representing the same volumetric domain.

Most of the common finite elements for solid mechanics are formulated in displacements. The current developments give the displacement-based elememts avaliable in the application and also some hybrid dislacement-pressure based elements. The last ones are useful for the treatment of the material incompressibility.

Linear Type | SolidElement | Material Type | Dimension | Geometry |
---|---|---|---|---|

Small Displacements | LinearSolidElement | Elastic, Damage | 2D plane state / 3D | Triangles, Quadrilaterals |

SmallDisplacementElement | Tetrahedra, Hexahedra, Prisms | |||

AxisymSmallDisplacementElement | Elastic, Damage | 2D axi-symmetric | Triangles, Quadrilaterals | |

Large Displacements | TotalLagrangianElement | Elastic, HyperElastic, Plastic, Damage | 2D plane state / 3D | Triangles, Quadrilaterals |

UpdatedLagrangianElement | Tetrahedra, Hexahedra, Prisms | |||

AxisymUpdatedLagrangianElement | Elastic, Damage | 2D axi-symmetric | Triangles, Quadrilaterals |

#### Hybrid Displacement-Pressure UP Elements in the Solid Mechanics Application

Linear Type | SolidElement | Material Type | Dimension | Geometry |
---|---|---|---|---|

Large Displacements | UpdatedLagrangianUPElement | Elastic, HyperElastic, Plastic, Damage | 2D plane state / 3D | Triangle2D3N |

Tetrahedra3D4N | ||||

AxisymUpdatedLagrangianUPElement | Elastic, HyperElastic, Plastic, Damage | 2D axi-symmetric | Triangles2D3N |