Skip to main content

Pulse amplitude of intracranial pressure waveform in hydrocephalus

  • Conference paper
Acta Neurochirurgica Supplements

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 102))

Background There is increasing interest in evaluation of the pulse amplitude of intracranial pressure (AMP) in explaining dynamic aspects of hydrocephalus. We reviewed a large number of ICP recordings in a group of hydrocephalic patients to assess utility of AMP.

Materials and methods From a database including approximately 2,100 cases of infusion studies (either lumbar or intraventricular) and overnight ICP monitoring in patients suffering from hydrocephalus of various types (both communicating and non-communicating), etiology and stage of management (non-shunted or shunted) pressure recordings were evaluated. For subgroup analysis we selected 60 patients with idiopathic NPH with full follow-up after shunting. In 29 patients we compared pulse amplitude during an infusion study performed before and after shunting with a properly functioning shunt. Amplitude was calculated from ICP waveforms using spectral analysis methodology.

Findings A large amplitude was associated with good outcome after shunting (positive predictive value of clinical improvement for AMP above 2.5 mmHg was 95%). However, low amplitude did not predict poor outcome (for AMP below 2.5 mmHg 52% of patients improved). Correlations of AMP with ICP and Rcsf were positive and statistically significant (N=131 with idiopathic NPH; R= 0.21 for correlation with mean ICP and 0.22 with Rcsf; p< 0.01). Correlation with the brain elastance coefficient (or PVI) was not significant. There was also no significant correlation between pulse amplitude and width of the ventricles. The pulse amplitude decreased (p<0.005) after shunting.

Conclusions Interpretation of the ICP pulse waveform may be clinically useful in patients suffering from hydrocephalus. Elevated amplitude seems to be a positive predictor for clinical improvement after shunting. A properly functioning shunt reduces the pulse amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avezaat CJ, Eijndhoven JH (1986) Clinical observations on the relationship between cerebrospinal fluid pulse pressure and intracranial pressure. Acta Neurochir (Wien) 79(1):13–29

    Article  CAS  Google Scholar 

  2. Borgesen SE, Gjerris F (1982) The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain 105(Pt 1):65–86

    Article  PubMed  CAS  Google Scholar 

  3. Bergsneider M, Alwan AA, Falkson L, Rubinstein EH (1998) The relationship of pulsatile cerebrospinal fluid flow to cerebral blood flow and intracranial pressure: a new theoretical model. Acta Neurochir Supp 71:266–268

    CAS  Google Scholar 

  4. Bradley WG Jr, Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P (1996) Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 198(2):523–529

    PubMed  Google Scholar 

  5. Christensen L, Borgesen SE (1989) Single pulse pressure wave analysis by fast Fourier transformation. Neurol Res 11(4):197–200

    PubMed  CAS  Google Scholar 

  6. Czosnyka M, Wollk-Laniewski P, Batorski L, Zaworski W (1988) Analysis of intracranial pressure waveform during infusion test. Acta Neurochir (Wien) 93(3–4):140–145

    Article  CAS  Google Scholar 

  7. Czosnyka Z, Czosnyka M, Owler B, Momjian S, Kasprowicz M, Schmidt EA, Smielewski P, Pickard JD (2005) Clinical testing of CSF circulation in hydrocephalus. Acta Neurochir Suppl 95:247–251

    Article  CAS  Google Scholar 

  8. Di Rocco C, Pettorossi VE, Caldarelli M, Mancinelli R, Velardi F (1977) Experimental hydrocephalus following mechanical increment of intraventricular pulse pressure. Experientia 33 (11):1470–1472

    Article  PubMed  CAS  Google Scholar 

  9. Dombrowski SM, Schenk S, Leichliter A, Leibson Z, Fukamachi K, Luciano MG (2006) Chronic hydrocephalus-induced changes in cerebral blood flow: mediation through cardiac effects. J Cereb Blood Flow Metab 26(10):1298–1310

    Article  PubMed  Google Scholar 

  10. Egnor M, Zheng L, Rosiello A, Gutman F, Davis R (2002) A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg 36(6):281–303

    Article  PubMed  Google Scholar 

  11. Eide PK, Brean A (2006) Intracranial pulse pressure amplitude levels determined during preoperative assessment of subjects with possible idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 148(11):1151–1156

    Article  CAS  Google Scholar 

  12. Foltz EL, Aine C (1981) Diagnosis of hydrocephalus by CSF pulse-wave analysis: a clinical study. Surg Neurol 15(4):283–293

    Article  PubMed  CAS  Google Scholar 

  13. Greitz D, Hannerz J, Rahn T, Bolander H, Ericsson A (1994) MR imaging of cerebrospinal fluid dynamics in health and disease. On the vascular pathogenesis of communicating hydrocephalus and benign intracranial hypertension. Acta Radiol 35(3):204–211

    PubMed  CAS  Google Scholar 

  14. Greitz D (2004) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27(3):145–165 discussion 166–167

    Article  PubMed  Google Scholar 

  15. Krauss JK, Regel JP, Vach W, Jungling FD, Droste DW, Wakhloo AK (1997) Flow void of cerebrospinal fluid in idiopathic normal pressure hydrocephalus of the elderly: can it predict outcome after shunting? Neurosurgery 40(1):67–73

    Article  PubMed  CAS  Google Scholar 

  16. Kuchiwaki H, Misu N, Kageyama N, Ishiguri H, Takada S (1987) Periodic oscillation of intracranial pressure in ventricular dilation: a preliminary report. Neurol Res 9(4):218–224

    PubMed  CAS  Google Scholar 

  17. Lenfeldt N, Andersson N, Agren-Wilsson A, Bergenheim AT, Koskinen LO, Eklund A, Malm J (2004) Cerebrospinal fluid pulse pressure method: a possible substitute for the examination of B waves. J Neurosurg 101(6):944–950

    PubMed  Google Scholar 

  18. Lundberg N (1960) Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl 36(149):1–193

    CAS  Google Scholar 

  19. Marmarou A, Bergsnaider M, Klinge P, Relkin N, Black PM (2005) The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. Neurosurgery 57(3 Suppl):S17–S28

    PubMed  Google Scholar 

  20. Matsumoto T, Nagai H, Kasuga Y, Kamiya K (1986) Changes in intracranial pressure (ICP) pulse wave following hydrocephalus. Acta Neurochir (Wien) 82(1–2):50–56

    Article  CAS  Google Scholar 

  21. Momjian S, Czosnyka Z, Czosnyka M, Pickard JD (2004) Link between vasogenic waves of intracranial pressure and cerebrospinal fluid outflow resistance in normal pressure hydrocephalus. Br J Neurosurg 18(1):56–61

    Article  PubMed  CAS  Google Scholar 

  22. Ohara S, Nagai H, Matsumoto T, Banno T (1988) MR imaging of CSF pulsatory flow and its relation to intracranial pressure. J Neurosurg 69(5):675–682

    PubMed  CAS  Google Scholar 

  23. Pettorossi VE, Di Rocco C, Mancinelli R, Caldarelli M, Velardi F (1978) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pulse pressure: rationale and method. Exp Neurol 59(1):30–39

    Article  PubMed  CAS  Google Scholar 

  24. Portnoy HD, Chopp M, Branch C, Shannon MB (1982) Cerebrospinal fluid pulse waveform as an indicator of cerebral autoregulation. J Neurosurg 56(5):666–678

    Article  PubMed  CAS  Google Scholar 

  25. Stephensen H, Andersson N, Eklund A, Malm J, Tisell M, Wikkelso C (2005) Objective B wave analysis in 55 patients with non-communicating and communicating hydrocephalus. J Neurol Neurosurg Psychiatry 76(7):965–970

    Article  PubMed  CAS  Google Scholar 

  26. Stephensen H, Tisell M, Wikkelso C (2002) There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery 50(4):763–771

    Article  PubMed  Google Scholar 

  27. Wagshul ME, Chen JJ, Egnor MR, McCormack EJ, Roche PE (2006) Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J Neurosurg 104 (5):810–819

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. -J. Steiger

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this paper

Cite this paper

Czosnyka, Z. et al. (2008). Pulse amplitude of intracranial pressure waveform in hydrocephalus. In: Steiger, H.J. (eds) Acta Neurochirurgica Supplements. Acta Neurochirurgica Supplementum, vol 102. Springer, Vienna. https://doi.org/10.1007/978-3-211-85578-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-85578-2_28

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-85577-5

  • Online ISBN: 978-3-211-85578-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics