Skip to main content
Log in

Remote metabolic effects of cerebrovascular lesions: magnetic resonance and positron tomography imaging

  • Originals
  • Published:
Neuroradiology Aims and scope Submit manuscript

Summary

Combined Positron Emission Tomography (PET) and Proton Magnetic Resonance Imaging (MRI) study were performed in six patients with chronic supratentorial stroke to investigate whether remote hypometabolic regions revealed by PET showed any abnormality on MRI. Either regional oxygen consumption (n=4) or glucose utilization (n=2) were measured using PET and the 15O steady state 18FGD technique, respectively. Four patients, with deeply located brain lesions, showed a significant metabolic reduction in the overlying cerebral cortex. In the remaining two patients, affected by a large cortical infarct, there was a significant crossed cerebellar hypometabolism. The MRI weighted by the parameters spin density (ϱ), spin lattice (T1) and spin-spin (T2) relaxation times were obtained employing various sequences in the same subjects. In no patient did the MRI show any contrast modification in these hypometabolic remote regions, suggesting that subtle loss of tissue and/or biochemical change do not underlie the reduction in metabolic rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lenzi GL, Frackowiak RSJ, Jones T (1982) Cerebral oxygen metabolism and blood flow in human cerebral ischemic infarction. J Cerebr Blood Flow Metab 2:321–335

    Google Scholar 

  2. Rougemont D, Baron JC, Lebrun Grandiè P, Bousser MG, Soisson T, Comar D (1982) Débit sanguin cérébral et extraction d'oxygène dans les hémiplégies lacunaires: etude semiquantitative par l'oxygène-15 et la tomographie d'émission. Pathologie Biologie 30:295–302

    Google Scholar 

  3. Baron JC, D'Antona R, Pantano P, Serdaru M, Samson Y, Bousser MG (1986) Effects of thalamic stroke on energy metabolism of the cerebral cortex. Brain (in press)

  4. Kuhl DE, Phelps ME, Kowell AP, Metter EJ, Selin C, Winter J (1980) Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8:47–60

    Google Scholar 

  5. Phelps ME, Mazziotta JC, Kuhl DE, Nuwer M, Packwood J, Metter EJ, Engel J (1981) Tomographic mapping of human cerebral metabolism: visual stimulation and deprivation. Neurology 31:517–529

    Google Scholar 

  6. Heiss WD, Vyska K, Kloster G, Traupe H, Freundlieb C, Hoeck A, Feinendegen LE, Stoecklin G (1982) Demonstration of decreased functional activity of visual cortex by 11C-methylglucose and positron emission tomography. Neuroradiology 23:45–47

    Google Scholar 

  7. Baron JC, Bousser MG, Comar D, Castaigne P (1980/b) “Crossed cerebellar diaschisis” in human supratentorial brain infarction. Trans Am Neurol Assoc 105:459–461

    Google Scholar 

  8. Martin W, Raichle M (1983) Cerebellar blood flow and metabolism in cerebral hemisphere infarction. Ann Neurol 14: 168–176

    Google Scholar 

  9. Kushner M, Alavi A, Reivich M, Dann R, Burke A, Robinson G (1984) Contralateral cerebellar hypometabolism following cerebral insult: a positron emission tomography study. Ann Neurol 15:425–434

    Google Scholar 

  10. Pantano P, Baron JC, Samson Y, Bousser MG, De Rouesne C, Comar D (1986) Crossed cerebellar diaschisis: further studies. Brain 109:677–634

    Google Scholar 

  11. Jones T, Chesler DA, Ter Pogossian MM (1976) The continuous inhalation of oxygen 15 for assessing regional oxygen extraction in the brain of man. Br J Radiol 49, 339–343

    Google Scholar 

  12. Baron JC, Steinling M, Tanaka T, Cavalheiro E, Soussaline F, Collard P (1981c) Quantitative measurement of CBF, oxygen extraction fraction (OEF) and CMRO2 with the 15O continuous inhalation technique and positron emission tomography (PET): experimental evidence and normal values in man. J Cereb Blood Flow Metabol [Suppl] 1:5–6

    Google Scholar 

  13. Lammertsma AA, Jones T, Frackowiak RSJ, Lenzi GL (1981) A theoretical study of steady-state model for measuring regional cerebral blood flow and oxygen utilization using oxygen-15. J Comput Assist Tomogr 5:544–550

    Google Scholar 

  14. Lebrun-Grandié P, Baron JC, Soussaline F, Loc'h C, Sastre J, Bousser MG (1983) Coupling between regional blood flow and oxygen utilization in the normal human brain: a study with positron tomography and oxygen-15. Arch Neurol 40: 230–236

    Google Scholar 

  15. Pantano P, Baron JC, Lebrun-Grandié P, Duquesnoy N, Bousser MG, Comar D (1984) Regional cerebral blood flow and oxygen consumption in human aging. Stroke 15, 635–641

    Google Scholar 

  16. Steinling M, Baron JC, Mazière B, Lasjaunias P, Loc'h C, Cabanis EA, Guillon B (1985) Tomographic measurement of cerebral blood flow by the 68Ga-labelled microsphere and continuous C15O2 inhalation methods. Eur J Nucl Med 11:29–32

    Google Scholar 

  17. Reivich M, Kuhl D, Wolf A, Grenberg J, Phelps M, Ido T, Cassella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The (18F) fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137

    Google Scholar 

  18. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxyD-glucose: validation of method. Ann Neurol 6:371–388

    Google Scholar 

  19. Soussaline F, Campagnolo R, Verrey B, Bendriem B, Bouvier A, Lecomte JL, Comar D (1984) Physical characterization of a time-of-flight positron emission tomography system for whole-body quantitative studies. J Nucl Med 25:P 46

    Google Scholar 

  20. Bradley WG, Waluch V, Zawadzki MB, Yadley R, Wycoff R (1984) Patchy, periventricular white matter lesions in the elderly. A common observation during NMR imaging. Non invasive medical imaging 1:35–41

    Google Scholar 

  21. Von Monakow C (1914) Die lokalisation im grosshirm und der abban der funktion durch kortikale herde. Wiesbaden, JF Bergmann, 26–34

    Google Scholar 

  22. Kanaya H, Endo H, Sugiyama T, Kuroda K (1983) “Crossed Cerebellar diaschisis”, in patients with putaminal hemorrage. J Cereb Blood Flow Metabol 3 [suppl]:27–28

    Google Scholar 

  23. Partain CL, James AE, Rollo FD, Price RR (1983) Nuclear magnetic resonance imaging. W. B. Saunders, Philadelphia

    Google Scholar 

  24. Pykett IL, Newhouse JH, Buonanno FS, Brady TJ, Goldman MR, Kistler JP, Pohost GM (1982) Principles of Nuclear Magnetic Resonance Imaging. Radiology 143:157–168

    Google Scholar 

  25. Brasch RC (1983) Work in progress: methods of contrast enhancement for NMR imaging and potential applications. Radiology 147:781–788

    Google Scholar 

  26. Crooks L, Hoenninger J, Arakawa M, Kaufman L, Mc Ree R, Watts J, Singer JH (1980) Tomography of hydrogen with nuclear magnetic resonance. Radiology 136:701–706

    Google Scholar 

  27. Crooks L (1985) The role of T1 and T2 in tissue identification. Society of Magnetic Resonance in Medicine, London 19–23 August, 1985

    Google Scholar 

  28. Pykett IL, Buonanno FS, Brady TJ, Kistler JP (1983) Techniques and approaches to proton NMR imaging of the head. Computerized Radiology 7:1–17

    Google Scholar 

  29. Bartkowski HK, Bederson J, Nishimura M, Brant-Zawadzki M, Moon R, Longar S, Pitts L (1985) Nuclear Magnetic Resonance (NMR) imaging and spectroscopy in experimental brain edema in the rat. Cerebral blood flow and metabolism measurement. Springer-Verlag, Berlin Heidelberg, pp 540–545

    Google Scholar 

  30. Buonanno FS, Pykett IL, Brady TJ, Vielma J, Burt CT, Goldman MR, Hinshaw WS, Pohost GM, Kistler JP (1983) Proton NMR imaging in experimental ischemic infarction. Stroke 14: 178–184

    Google Scholar 

  31. Kato H, Kogure K, Ohtomo H, Tobita M, Matsui S, Yamamoto E, Kohno H (1985) Correlations between proton nuclear magnetic resonance imaging and retrospective histochemical images in experimental cerebral infarction. J Cerebral Blood Flow Metabolism 5:267–274

    Google Scholar 

  32. Runge VM, Stewart RG, Clanton JA, Jones MM, Lukehart CM, Partain CL, James AE (1983) Work in progress: potential oral and intravenous paramagnetic NMR contrast agent. Radiology 147:789–791

    Google Scholar 

  33. Pykett IL, Rosen BR (1983) Nuclear Magnetic Resonance: in vivo proton chemical shift imaging. Radiology 149:197–201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pappata, S., Tran Dinh, S., Baron, J.C. et al. Remote metabolic effects of cerebrovascular lesions: magnetic resonance and positron tomography imaging. Neuroradiology 29, 1–6 (1987). https://doi.org/10.1007/BF00341027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00341027

Key words

Navigation