Skip to main content
Log in

Some metabolic relationships between biopterin and folate: Implications for the “methyl trap hypothesis”

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Tetrahydrobiopterin and the folate coenzymes can reciprocally interact in ways that would be useful to the metabolic pathways subserved by both of these coenzymes. Thus, through one of the reactions catalyzed by methylene tetrahydrofolate reductase, 5-CH3-H4-folate can regenerate BH4 from q-BH2 and q-BH2 can provide an escape from the “methyl trap.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Huennekens, F. M. 1963. The role of dihydrofolic reductase in the metabolism of one-carbon units. Biochem. 2:151–159.

    Google Scholar 

  2. Blakley, R. L. 1969. Frontiers of Biology. Pages 1–517,in Neuberger, A., and Tatum, E. L. (eds.), The Biochemistry of Folic Acid and Related Pteridines. American Elsevier Pub. Co., New York.

    Google Scholar 

  3. Kaufman, S. 1963. The structure of phenylalanine hydroxylation cofactor. Proc. Natl. Acad. Sci. 50:1085–1093.

    Google Scholar 

  4. Brenneman, A. R., and Kaufman, S. 1964. The role of tetrahydropteridines in the enzymatic conversion of tyrosine to 3,4-dihydroxyphenylalanine. Biochem. Biophys. Res. Comm. 17:177–183.

    Google Scholar 

  5. Shiman, R., Akino, M., and Kaufman, S. 1971. Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. J. Biol. Chem. 246:1330–1340.

    Google Scholar 

  6. Jequier, E., Robinson, D. S., Lovenberg, W., Sjoerdsma, A. 1969. Further studies on tryptophan hdyroxylase in rat brain stem and beef pineal. Biochem. Pharmacol. 18:1071–1081.

    Google Scholar 

  7. Friedman, P. A., Kappelman, A. H., and Kaufman, S. 1972. Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain. J. Biol. Chem. 247:4165–4173.

    Google Scholar 

  8. Kaufman, S., Berlow, S., Summer, G. K., Milstien, S., Schulman, J. D., Orloff, S., Spielberg, S., and Pueschel, S. 1978. Hyperphenylalaninemia due to a deficiency of biopterin. A variant form of phenylketonuria. New Eng. J. Med. 299:673–679.

    Google Scholar 

  9. Kaufman, S., and Fisher, D. B. 1974. Pterin-requiring aromatic amino acid hydroxylases. Pages 285–369,in Hayaishi, O. (ed.), Molecular Mechanisms of Oxygen Activation. Academic Press, New York.

    Google Scholar 

  10. Kaufman, S. 1975. Studies on the mechanism of phenylalanine hydroxylase: Detection of an intermediate. Pages 291–304,in Pfleiderer, W. (ed.), Chemistry and Biology of Pteridines, Walter de Gruyter, Berlin.

    Google Scholar 

  11. Lazarus, R. A., Benkovic, S. J., and Kaufman, S. 1983. Phenylalanine hydroxylase stimulator protein is a 4a-carbinolamine dehydratase. J. Biol. Chem. 258:10960–10962.

    Google Scholar 

  12. Kaufman, S. 1967. Unanswered questions in the primary metabolic block in phenylketonuria. Pages 205–213,in Anderson, J. A., Swaiman, K. F. (eds.), Phenylketonuria and Allied Metabolic Diseases. U.S. Government Printing Office, Washington D.C.

    Google Scholar 

  13. Kaufman, S. 1958. Phenylalanine hydroxylation cofactor in phenylketonuria. Science 128:1506.

    Google Scholar 

  14. Bartholomé, K. 1974. A new molecular defect in phenylketonuria. Lancet ii:1580.

    Google Scholar 

  15. Smith, I. 1974. Atypical phenylketonuria accompanied by a severe progressive neurological illness unresponsive to dietary treatment. Archs. Dis. Childh. 49:245.

    Google Scholar 

  16. Kaufman, S., Holtzman, N., Milstien, S., Butler, I. J., and Krumholz, A. 1975. Phenylketonuria due to a deficiency of dihydropteridine reductase. New Eng. J. Med. 293:786–789.

    Google Scholar 

  17. Butler, I. J., Krumholz, A., Holtzman N. A., Koslow, S. H., and Kaufman, S. 1975. Dihydropteridine reductase deficiency variant of phenylketonuria: A disorder of neurotransmitters. Trans. Am. Neurol. Assoc. 100:43–47, 1975.

    Google Scholar 

  18. Butler, I. J., Koslow, S. H., Krumholz, A., Holtzman, N.A., and Kaufman, S. 1978. A disorder of biogenic amines in dihydropteridine reductase deficiency. Ann. Neur. 3:224–230.

    Google Scholar 

  19. Milstien, S., Holtzman, N. A., O'Flynn, M. E., Thomas, G. H., Butler, I. J., and Kaufman, S. 1976. Hyperphenylalaninemia due to dihydropteridine reductase deficiency. J. Pediatr. 89:763–766.

    Google Scholar 

  20. Brewster, T. G., Moskowitz, M. A., Kaufman, S., Breslow, J. L., Milstien, S., and Abroms, I. F. 1979. Dihydropteridine reductase deficiency associated with severe neurologic disease and mild hyperphenylalaninemia. Pediatrics. 63:94–99.

    Google Scholar 

  21. Bertino, J. R., Simmons, B., and Donohue, D. M. 1964. Levels of dihyrofolate reductase and the formate-activating enzyme activities in guinea pig tissues before and after amethopterin administration. Biochem. Pharmac. 13:225–233.

    Google Scholar 

  22. Braganca, B. M., and Kenkare, U. W. 1964. Folic acid reductases in relation to normal and malignant growth. Acta Unio Inter. Contra Cancrum 20:980–982.

    Google Scholar 

  23. Makulu, D. R., Smith, E. F., and Bertino J. R. 1973. Lack of dihydrofolate reductase activity in brain tissue of mammalian species: possible implicationas. J. Neurochem. 21:241–244.

    Google Scholar 

  24. Tanaka, K., Akino, M., Hagi, Y., Doi, M., and Shiota, T. 1980. The enzymatic synthesis of sepiapterin by chicken kidney preparations. J. Biol. Chem. 256:2963–2972.

    Google Scholar 

  25. Kaufman, S. 1967. Metabolism of the phenylalanine hydroxylation cofactor. J. Biol. Chem. 242:3934–3943.

    Google Scholar 

  26. Pollock, R. J., and Kaufman, S. 1978. Dihydrofolate reductase is present in the brain. J. Neurochem. 30:253–256.

    Google Scholar 

  27. Milstien, S., and Kaufman, S. 1983. Tetrahydrosepiapterin is an intermediate in tetrahydrobiopterin biosynthesis. Biochem. Biophys. Res. Comm. 115:888–893.

    Google Scholar 

  28. Milstien, S., and Kaufman, S. 1986. The biosynthesis of tetrahydrobiopterin in rat brain. Pages 169–181,in Cooper, B. A., Whitehead, V. M. (eds.), Chemistry and Biology of Pteridines, Walter de Gruyter, Berlin.

    Google Scholar 

  29. Switchenko, A. C., Primus, J. P., and Brown, G. M. 1984. Intermediates in the enzymatic synthesis of tetrahydrobiopterin in Drosophila Melangaster. Biochem. Biophys. Res. Comm. 120:754–760.

    Google Scholar 

  30. Levine, R. A., Heintel, D., Leimbacher, W.; Niederwieser, A., Curtius, H.-Ch., and Ghisla, S. 1983. Recent advances in tetrahydrobiopterin biosynthesis and the treatment of human disease. Pages 325–337,in Curtius, H.-Ch., Pfleiderer, W., and Wachter, H. (eds.), Biochemical and Clinical Aspects of Pteridines, Walter de Gruyter, Berlin.

    Google Scholar 

  31. Smith, G. K., and Nichol, C. A. 1984. Two new tetrahydropterin intermediates in the adrenal medullaryde novo biosynthesis of tetrahydrobiopterin. Biochem. Biophys. Res. Comm. 120:761–766.

    Google Scholar 

  32. Pollock, R. J., and Kaufman, S. 1978. Dihydropteridine reductase may function in tetrahydrofolate metabolism. J. Neurochem. 31:115–123.

    Google Scholar 

  33. Kaufman, S. 1983. Phenylketonuria and its variants. Pages 217–297,in Harris, H., and Hirschhorn, K. (eds.), Advances in Human Genetics, Plenum Pub. Corp., New York.

    Google Scholar 

  34. Kaufman, S. 1985. Hyperphenylalaninemia caused by defects in biopterin metabolism. J. Inherit. Metab. Dis. 8, Suppl. 1:20–27.

    Google Scholar 

  35. Smith, I., and Leeming, R. 1985. Clinical role of pteridine therapy in tetrahydrobiopterin deficiency. J. Inherit. Metab. Dis. 8:39–40.

    Google Scholar 

  36. Harpey, J. P. 1983. Les defauts dysynthese des biopterines: les deficit complets (reductase et synthetase). Arch. Fr. Pediatr. 40:231–235.

    Google Scholar 

  37. Irons, M., Levy, H. L., O'Flynn, M. E., Stack, C. V., Langlais, P. J., Butler, I. J., Milstien, S., and Kaufman, S. 1987. Folinic acid therapy in the treatment of dihydropteridine reductase deficiency. J. Pediatr. 110:61–67.

    Google Scholar 

  38. Matthews, R. G., and Kaufman, S. 1980. Characterization of the dihydropterin reductase activity of pig liver methylenetetrahydrofolate reductase. J. Biol. Chem. 255:6014–6017.

    Google Scholar 

  39. Noronha, J. M., and Silverman, M. 1962. On folic acid, vitamin B12, methionine and formiminoglutamic acid metabolism. Pages 728–736,in Heinrich, H.C. (ed.), Second European Symposium on Vitamin B12 and Intrinsic Factor, Enke, Stuttgart.

    Google Scholar 

  40. Herbert, V., and Zalusky, R. 1962. Interrelations of vitamin B12 and folic acid metabolism: Folic acid clearance studies. J. Clin. Invest. 41:1263–1276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Louis Sokoloff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufman, S. Some metabolic relationships between biopterin and folate: Implications for the “methyl trap hypothesis”. Neurochem Res 16, 1031–1036 (1991). https://doi.org/10.1007/BF00965847

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965847

Key Words

Navigation