Skip to main content
Log in

Functional imaging and localization of electromagnetic brain activity

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

Functional imaging of electric brain activity requires specific models to transform the signals recorded at the surface of the human head into an image. Two categories of model are available: single-time-point and spatio-temporal methods. The instantaneous methods rely only on the few voltage differences measured at one sampling point. To create a spatial image from this limited information, they require strict assumptions that rarely conform with the underlying physiology. Spatio-temporal models create two kinds of images: first, a spatial image of discrete equivalent multiple dipoles or regional sources, and second, an image of source current waveforms that reflect the temporal dynamics of the brain activity in circumscribed areas. The accuracy of the spatial image is model dependent and limited, but it can be validated from the spatio-temporal data by the "regional source imaging" technique, introduced here. The source waveforms are linear combinations of the scalp waveforms, and thus, specific derivations which image local brain activities at a macroscopic level. Brain source imaging of somatosensory evoked potentials revealed temporally overlapping activities from the brainstem, thalamus and from multiple sources in the region of the contralateral somatosensory projection areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Achim, A., Richer, R., Saint-Hilaire, J.M. Methods for separating temporally overlapping sources of neuroelectric data. Brain Topography 1988, 1: 22–28.

    PubMed  Google Scholar 

  • Achim, A., Richer, R., Saint-Hilaire, J.M. Methodological consideration for the evaluation of spatio-temporal source models. Electroenceph. clin. Neurophysiol. 1991, 79: 227–240.

    PubMed  Google Scholar 

  • Baumgartner, C., Sutherling, W.W., Shi Di and Barth, D.S. Investigation of multiple simultaneously active brain sources in the electroencephalogram. J. Neurosci. Methods, 1989, 30: 175–184.

    PubMed  Google Scholar 

  • Buchner, H. and Scherg, M. Analyse der Generatoren früher kortikaler somatosensibler evozierter Potentiale (N. medianus) mit der Dipolquellenanalyse: Erste Ergebnisse. Z. EEG-EMG, 1991, 22: 62–69.

    Google Scholar 

  • Berg, P. and Scherg, M. Dipole modelling of eye activity and its application to the removal of eye artifacts from the EEG and MEG. Clin. Phys. Physiol. Meas. 1991, 12, Suppl. A: 49–54.

    PubMed  Google Scholar 

  • De Munck, J.C. The estimation of time varying dipoles on the basis of evoked potentials. Electroenceph. clin. Neurophysiol. 1990, 77: 156–160.

    PubMed  Google Scholar 

  • De Munck, J.C., van Dijk, B.W. and Spekreijse, H. An analytic method to determine the effect of source modelling errors on the apparent location and direction of biological sources. J. Appl. Phys., 1988a, 63: 944–956.

    Google Scholar 

  • De Munck, J.C., van Dijk, B.W. and Spekreijse, H. Mathematical dipoles are adequate to describe realistic generators of human brain activity. IEEE Trans. Biomed. Eng., 1988b, 35: 960–966.

    PubMed  Google Scholar 

  • Fender, D.H. Source localization of brain electrical activity. In: A.S. Gevins and A. Remond (Eds.), Methods of Analysis of Brain Electrical and Magnetic Signals. EEG Handbook, revised series, Elsevier, Amsterdam, 1987, 355–403.

    Google Scholar 

  • Freeman, W.J. Mass action in the nervous system. New York, Academic Press, 1975.

    Google Scholar 

  • Glaser, E.M. and Ruchkin, D.S. Principles of neuro-biological signal analysis. Academic Press, New York, 1976.

    Google Scholar 

  • Hämäläinen, M.S. and Ilmoniemi, R.S. Interpreting measured magnetic fields of the brain: estimates of current distributions. Report TKK-F-A559, Helsinki University of Technology, Espoo, 1984.

    Google Scholar 

  • Ioannides, A.A., Bolton, J.P.R. and Clarke, C.J.S. Continuous probabilistic solutions to the biomagnetic inverse problem. Inverse Problems, 1990, 6: 523–542.

    Google Scholar 

  • Maier, J., Dagnelie, H., Spekreijse, H. and van Dijk, B.W. Principal components analysis for source localization of VEPs in man. Vision Res. 1987, 27: 165–177.

    PubMed  Google Scholar 

  • Mosher, J.C., Lewis, P.S. and Leahy, R. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng., 1992, 39: 541–557.

    PubMed  Google Scholar 

  • Pascual, R., Gonzalez, S., Valdes, P. and Biscay, R. Current source density estimation and interpolation based on the spherical harmonic Fourier expansion. Int. J. Neurosci. 1988, 43: 237–248.

    PubMed  Google Scholar 

  • Perrin, F., Pernier, J., Bertrand, O. and Echallier, J.F. Spherical splines for scalp potential and current density mapping. Electroenceph. clin. Neurophysiol. 1989, 72:184–187.

    PubMed  Google Scholar 

  • Petersen, S.E., Fox, P.T., Posner, M.I., Mintun. M., Raichle, M.E. Positron emission tomographic studies of cortical anatomy of single-word processing. Nature 1988, 331: 585–589.

    PubMed  Google Scholar 

  • Scherg, M. Fundamentals of dipole source potential analysis. In: F. Grandori, M. Hoke and G.L. Romani (Eds), Auditory evoked magnetic fields and electric potentials. Adv. Audiol., Vol. 6, Basel, Karger, 1990: 40–69.

    Google Scholar 

  • Scherg, M. and von Cramon, D. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroenceph. clin. Neurophysiol. 1985, 62: 32–44.

    PubMed  Google Scholar 

  • Scherg, M. and von Cramon, D. Evoked dipole source potentials of the human auditory cortex. Electroenceph. clin. Neurophysiol. 1986, 65: 344–360.

    PubMed  Google Scholar 

  • Scherg, M. and von Cramon, D. Dipole source potentials of the auditory cortex in normal subjects and patients with temporal lobe lesions. In: F. Grandori, M. Hoke and G.L. Romani (Eds), Auditory evoked magnetic fields and electric potentials. Adv. Audiol., Vol. 6, Basel, Karger, 1990: 165–193.

    Google Scholar 

  • Scherg, M. and Berg, P. Use of prior knowledge in brain electromagnetic source analysis. Brain Topography 4, 1991: 143–150.

    PubMed  Google Scholar 

  • Scherg, M. and Buchner, H. Somatosensory evoked potentials and magnetic fields: separation of multiple source activities. Clin. Phys. Physiol. Meas., 1992, in press.

  • Scherg, M. and Picton, T.W. Separation and identification of event-related potential components by brain electric source analysis. In: C.H.M. Brunia, G. Mulder, M.N. Verbaten (Eds.), Event-Related Potentials of the brain (EEG Suppl. 42). Elsevier, Amsterdam, 1991: 24–37.

    Google Scholar 

  • Scherg, M., Vajsar J. and Picton T.W. A source analysis of the human auditory evoked potentials. J. Cogn. Neurosci. 1989, 1: 336–355.

    Google Scholar 

  • Schneider, M.R. A multistage process for computing virtual dipolar sources of EEG discharges from surface information. IEEE Trans. Biomed. Eng., 1972, 19: 1–12.

    PubMed  Google Scholar 

  • Snyder, A.Z. Dipole source localization in the study of EP generators: a critique. Electroenceph. clin. Neurophysiol. 1991, 80: 321–325.

    PubMed  Google Scholar 

  • Wood, C.C. Application of dipole localization methods to source identification of human evoked potentials. In: I. Bodis-Wollner (Ed.), Evoked Potentials. Ann. N.Y. Acad. Sci., 1982, 38: 139–155.

    Google Scholar 

  • Zatorre, R.J., Evans, A.C., Meyer, E. and Gjedde, A. Lateralization in phonetic and pitch discrimination in speech processing. Science 1992, 256: 846–849.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I wish to thank Terry Picton and Patrick Berg for their helpful comments on the manuscript and Helmut Buchner and Irene Ludwig for providing the SEP data.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherg, M. Functional imaging and localization of electromagnetic brain activity. Brain Topogr 5, 103–111 (1992). https://doi.org/10.1007/BF01129037

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01129037

Keywords

Navigation