Skip to main content
Log in

Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury

  • Published:
Journal of Neurocytology

Summary

There has been controversy for some time as to whether a posttraumatic influx of calcium ions occurs in stretch/non-disruptively injured axons within the central nervous system in both human diffuse axonal injury and a variety of models of such injury. We have used the oxalate/pyroantimonate technique to provide cytochemical evidence in support of such an ionic influx after focal axonal injury to normoxic guinea pig optic nerve axons, a model for human diffuse axonal injury. We present evidence for morphological changes within 15 min of injury where aggregates of pyroantimonate precipitate occur in nodal blebs at nodes of Ranvier, in focal swellings within axonal mitochondria, and at localized sites of separation of myelin lamellae. In parallel with these studies, we have used cytochemical techniques for localization of membrane pump Ca2+-ATPase and ecto-Ca-ATPase activity. There is loss of labelling for membrane pump Ca2+-ATPase activity on the nodal axolemma, together with loss of ecto-Ca-ATPase from the external aspect of the myelin sheath at sites of focal separation of myelin lamellae. Disruption of myelin lamellae and loss of ecto-Ca-ATPase activity becomes widespread between 1 and 4 h after injury. This is correlated with both infolding and retraction of the axolemma from the internal aspect of the myelin sheath to form periaxonal spaces which are characterized by aggregates of pyroantimonate precipitate, and the development of myelin intrusions into invaginations of the axolemma such that the regular profile of the axon is lost. There is novel labelling of membrane pump Ca2+-ATPase on the cytoplasmic aspect of the internodal axolemma between 1 and 4 h after injury. There is loss of an organized axonal cytoskeleton in a proportion of nerve fibres by 4–6 h after injury. We suggest that these changes demonstrate a progressive pathology linked to calcium ion influx after stretch (non-disruptive) axonal injury to optic nerve myelinated fibres. We posit that calcium influx, linked to or correlated with changes in Ca2+-ATPase activities, results in dissolution of the axonal cytoskeleton and axotomy between 4 and 6 h after the initial insult to axons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, J. H., Graham, D. I., Genneralli, T. A. &Maxwell, W. L. (1991) Diffuse axonal injury in non-missile head injury.Journal of Neurology, Neurosurgery and Psychiatry 54, 481–3.

    Google Scholar 

  • Akisaka, T. &Oda, M. (1977) The fine structural localization of adenosine triphosphatase activity on the tase bud in the fungiform papillae of the rat.Archives of Histology 40, 63–72.

    Google Scholar 

  • Ando, T., Fujimoto, K., Mayahara, A., Miyajima, H. &Ogawa, K. (1981) A new one-step method for the histochemistry and cytochemistry of Ca2+-ATPase activity.Acta Histochemica et Cytochemica 14, 705–26.

    Google Scholar 

  • Ballentine, J. D. (1978) Pathology of experimental spinal cord trauma II. Ultrastructure of axons and myelin.Laboratory Investigation 39, 254–66.

    Google Scholar 

  • Barry, M. A. (1992) Ecto-calcium-dependent ATPase activity of mammalian taste bud cells.Journal of Histochemistry and Cytochemistry 40, 1919–28.

    Google Scholar 

  • Black, J. A., Felts, P., Smith, K. J., Kocsis, J. D. &Waxman, S. G. (1991) Distribution of sodium channels in chronically demyelinated spinal cord axons: immuno-ultrastructural localization and electrophysiological observations.Brain Research 544, 59–70.

    Google Scholar 

  • Blaustein, M. P. (1988) Calcium transport and buffering in neurons.Trends in Neuroscience 11, 438–43.

    Google Scholar 

  • Blumbergs, P. C., Scott, G., Manavis, J., Wainwright, H., Simpson, D. A. &McLean, A. J. (1994) Staining of amyloid precursor protein to study axonal damage in mild head injury.The Lancet 344, 1055–6.

    Google Scholar 

  • Borgers, M., Debrabander, M., Van Reempts, J., Awouters, F. &Jacob, W. A. (1977) Intranuclear microtubules in lung mast cells of guinea-pig in anaphylactic shock.Laboratory Investigation 37, 1–7.

    Google Scholar 

  • Carafoli, E. (1987) Intracellular calcium homeostasis.Annual Review of Biochemistry 56, 395–433.

    Google Scholar 

  • Choi, D. W. (1985) Glutamate neurotoxity in cortical cell culture is calcium dependent.Neuroscience Letters 58, 293–7.

    Google Scholar 

  • Dohrman, G. J., Wagner, F. C. &Bucy, P. C. (1972) Transitory traumatic paraplegia: electron microscopy of early alterations in myelinated nerve fibres.Journal of Neurosurgery 36, 407–15.

    Google Scholar 

  • Dzhandzhugazyan, K. &Bock, E. (1993) Demonstration of (Ca2+-Mg2+) -ATPase activity of the neural cell adhesion molecule.FEBS Letters 336, 279–83.

    Google Scholar 

  • Genneralli, T. A., Thibault, L. E., Tipperman, R., Tomei, G., Sergot, R., Brown, M., Maxwell, W. L., Graham, D. L., Adams, J. H., Irvine, A., Genneralli, L. M., Duhaime, A. C., Boock, R. &Greenberg, J. (1989) Axonal injury in the optic nerve: a model simulating diffuse axonal injury in the brain.Journal of Neurosurgery 71, 315–25.

    Google Scholar 

  • Gentleman, S. M., Roberts, G. W., Gennarelli, T. A., Maxwell, W. L., Adams, J. H., Kerr, S., &Graham, D. I. (1995) Axonal injury: a universal consequence of fatal closed head injury?Acta Neuropathologica 89, 537–43.

    Google Scholar 

  • Gioglio, L., Rapuzzi, G. &Quacci, D. (1991) Ca2+- ATPase and Na+, K+-ATPase activities in the fungiform papillae of the tongue of Rana esculenta (Aruna, Ranidae),Journal of Morphology 210, 117–31.

    Google Scholar 

  • Hale, C. C., Kleiboeker, C. B., Carlton, C. G., Rovetto, M. J., Jung, C. &Kim, H. D. (1988) Evidence for high molecular weight Na-Ca exchange in cardiac sarcolemma vesicles.Journal of Membrane Biology 106, 211–18.

    Google Scholar 

  • Happel, R. D., Smith, K. P., Banik, N. L., Powers, J. M., Hogan, E. L. &Balentine, J. E. (1981) Ca2+ accumulation in experimental spinal cord trauma.Brain Research 211, 476–9.

    Google Scholar 

  • Hirano, A., Levine, S. &Zimmerman, H. M. (1967) Experimental cyanide encephalopathy: electron microscopic observations of early lesions in white matter.Journal of Neuropathology and Experimental Neurology 26, 200–13.

    Google Scholar 

  • Inouye, H. &Kirschner, D. A. (1988) Membrane interactions in nerve myelin. I. Determination of surface charge from effects of pH and ionic strength on period.Biophysical Journal 53, 235–46.

    Google Scholar 

  • Jellinger, K. &Seitelberger, F. (1970) Protracted posttraumatic encephalopathy. Pathology, pathogenesis and clinical implications.Journal of Neurological Science 10, 51–94.

    Google Scholar 

  • Kondo, S., Imamura, S., Fujimoto, K. &Ogawa, K. (1988) Calcium-activated adenosine triphosphatase and gap junctions in rat epidermis.Acta Histochemica et Cytochemica 21, 521–33.

    Google Scholar 

  • Kortje, K. H., Freihofer, D. &Rahmann, H. (1990) Cytochemical localization of high-affinity Ca2+-ATPase activity in synaptic terminals.Journal of Histochemistry and Cytochemistry 38, 895–900.

    Google Scholar 

  • Krieglstein, J., Sauer, D., Nuglisch, J., Karkoutly, C., Beck, T., Bielenberg, G. W., Rossberg, C. &Mennel, H. D. (1989) Protective effects of calcium anatagonists against brain damage caused by ischemia. InProceedings of the International Workshop on Cerebral Ischemia and Calcium (edited byHartman, G. &Kuschinsky, W.) pp. 223–31. Heidelberg: Springer.

    Google Scholar 

  • Lagnado, L. &Mcnaughton, P. A. (1990) Electrogenic properties of the Na: Ca exchange.Journal of Membrane Biology 113, 177–91.

    Google Scholar 

  • Mata, M. &Fink, D. J. (1989) Ca2+-ATPase in the central nervous system: an EM cytochemical study.Journal of Histochemistry and Cytochemistry 37, 971–80.

    Google Scholar 

  • Mata, M., Staple, J. &Fink, D. J. (1987) Ultrastructural distribution of Ca2+ within neurons. An oxalate pryoantimonate study.Histochemistry 87, 339–49.

    Google Scholar 

  • Mata, M., Staple, J. &Fink, D. J. (1988) Cytochemical localization of Ca2+-ATPase activity in peripheral nerve.Brain Research 445, 47–54.

    Google Scholar 

  • Maxwell, W. L. (1995) Histopathological changes at nodes of Ranvier after stretch injury.Microscopy and Research Technique, in press.

  • Maxwell, W. L., Kansagra, A. M., Graham, D. I., Adams, J. H. &Gennarelli, T. A. (1988) Freeze-fracture studies of reactive myelinated nerve fibres after diffuse axonal injury.Acta Neuropathologica 76, 395–406.

    Google Scholar 

  • Maxwell, W. L., Watt, C., Pediani, J. D., Graham, D. I., Adams, J. H. &Gennarelli, T. A. (1991a) Localisation of calcium ions and calcium-ATPase activity within myelinated nerve fibres of the adult guinea-pig optic nerve.Journal of Anatomy 176, 71–9.

    Google Scholar 

  • Maxwell, W. L., Irvine, A., Graham, D. I., Adams, J. H., Genneralli, T. A., Tipperman, R. &Sturatis, M. (1991b) Focal axonal injury: the early axonal response to stretch.Journal of Neurocytology 20, 157–64.

    Google Scholar 

  • Maxwell, W. L., Irvine, A., Watt, C., Graham, D. I., Adams, J. H. &Gennarelli, T. A. (1991c) The microvascular response to stretch injury in the adult guinea pig visual system.Journal of Neurotrauma 8, 271–9.

    Google Scholar 

  • Maxwell, W. L., Whitfield, P. C., Suzen, B., Graham, D. I., Adams, J. H., Watt, C. &Gennarelli, T. A. (1992) The cerebrovascular response to experimental lateral head acceleration.Acta Neuropathologia 84, 289–96.

    Google Scholar 

  • Maxwell, W. L., Watt, C., Graham, D. I. &Gennarelli, T. A. (1993) Ultrastructural evidence of axonal shearing as a result of lateral acceleration of the head in non-human primates.Acta Neuropathologica 86, 136–44.

    Google Scholar 

  • Mccreath, B. J. (1993) Cytochemical analysis of disruption of axonal calcium homeostasis following stretch and crush injury to the adult guinea pig optic nerve.Journal of Anatomy 183, 176.

    Google Scholar 

  • Mughal, S., Cushchieri, A. &Al-Bader, A. A. (1989) Intracellular distribution of Ca2+-Mg2+ adenosine triphosphatase (ATPase) in various tissues.Journal of Anatomy 162, 111–24.

    Google Scholar 

  • Nicholson, W. A. P., Gray, C. C., Chapman, J. N. &Robertson, B. W. (1982) Optimising thin film X-ray spectra for quantitative analysis.Journal of Microscopy 125, 25–40.

    Google Scholar 

  • Ochs, S. &Jersild, R. A. (1990) Myelin intrusions in beaded nerve fibres.Neuroscience 36, 553–67.

    Google Scholar 

  • Pappas, G. D. &Kriho, V. (1991) Fine structural localization of Ca2+-ATPase activity at frog neuromuscular junction.Journal of Neurocytology 17, 417–23.

    Google Scholar 

  • Penniston, J. T. (1983) Plasma membrane Ca2+-ATPases as active Ca2+ pumps. InCalcium and cell function, Vol IV (edited byCheung, W. Y.) pp. 99–149. New York: Academic Press.

    Google Scholar 

  • Pettus, E. H., Christman, C. W., Giebel, M. L. &Povlishock, J. T. (1994) Traumatically induced altered membrane permeability: its relationship to traumatically induced reactive axonal change.Journal of Neurotrauma 11, 507–22.

    Google Scholar 

  • Povlishock, J. T. (1986) Traumatically induced axonal damage without comcomitant change in focally related neuronal somata and dendrites.Acta Neuropathologica 70, 53–79.

    Google Scholar 

  • Povlishock, J. T. (1991) Current concepts on axonal damage due to head injury. InProceedings of the XIth International Congress of Neuropathology, Neuropathology Suppl 4 (edited byYonezawa, T. and the Organizing Committee) pp. 749–53.

  • Povlishock, J. T. (1992) Traumatically induced axonal injury: pathogenesis and pathobiological implication.Brain Pathology 2, 1–12.

    Google Scholar 

  • Rasgado-Flores, H. &Blaustein, M. P. (1987) Na/Ca exchange in barnacle muscle cells has a stoichiometry of 3Na+/lCa2+.American Journal of Physiology 252, C449–504.

    Google Scholar 

  • Raga, A. F. &Garrahan, P. J., eds. (1986)The Ca 2+ Pump of Plasma Membranes. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Ropte, S., Scheidt, P. &Friede, R. L. (1990) The intermediate dense line of the myelin sheath is preferentially accessible to cations and is stabilized by cations.Journal of Neurocytology 19, 242–52.

    Google Scholar 

  • Scarpa, A. (1976) Kinetic and thermodynamic aspects of mitochondrial calcium transport. InMitochondria: Bioenergetics, Biogenesis and Membrane Structure (edited byPacker, L. &Gomez-Puyou, A.) pp. 31–45. New York: Academic Press.

    Google Scholar 

  • Schlaepfer, W. W. (1977) Structural alterations of peripheral nerve induced by the calcium ionophore A23187.Brain Research 136, 1–9.

    Google Scholar 

  • Stokes, B. T., Fox, P. &Hollinden, G. (1985) Extracellular metabolites: their measurement and role in the acute phase of spinal cord injury. InTrauma of the Central Nervous System (edited byDacey, R. G., Winn, H. R., Rimel, R. W. &Jane, J. A.) pp. 309–23. New York: Raven Press.

    Google Scholar 

  • Stys, P. K., Waxman, S. G. &Ransom. B. R. (1992) Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+-Ca2+ exchanger.Journal of Neuroscience 12, 430–9.

    Google Scholar 

  • Tomei, G., Spagnoli, D., Ducati, A., Landi, A., Villani, R., Fumagali, G., Sala, C. &Gennarelli, T. (1990) Morphology and neurophysiology of focal axonal injury experimentally induced in the guinea-pig optic nerve.Acta Neuropathologica 80, 506–13.

    Google Scholar 

  • Wade, C. R., Ohara, P. T. &Lieberman, A. R. (1980) Calcium localization in normal and degenerating myelinated nerve fibres of the CNS.Journal of Anatomy 130, 641–4.

    Google Scholar 

  • Waxman, S. G., Black, J. A., Stys, P. K. &Ransom, B. R. (1992) Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve.Brain Research 574, 105–19.

    Google Scholar 

  • Waxman, S. G., Black, J. A., Ransom, B. R. &Stys, P. K. (1994) Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+- mediated injury in myelinated CNS axons.Brain Research 644, 197–204.

    Google Scholar 

  • Webster, H. de F. &Ames, A. (1965) Reversible and irreversible changes in the fine structure of nervous tissue during oxygen and glucose deprivation.Journal of Cell Biology 26, 885–909.

    Google Scholar 

  • Weiss, J. H., Hartley, D. M., Koh, J. &Choi, D. W. (1990) The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity.Science 247, 1474–7.

    Google Scholar 

  • Yu, Q. C. &Mcneil, P. L. (1992) Transient disruptions of aortic endothelial cell plasma membranes.American Journal of Pathology 141, 1349–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maxwell, W.L., McCreath, B.J., Graham, D.I. et al. Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury. J Neurocytol 24, 925–942 (1995). https://doi.org/10.1007/BF01215643

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01215643

Keywords

Navigation