Skip to main content
Log in

Cerebral oedema after subarachnoid haemorrhage. Pathogenetic significance of vasopressin

  • Clinical Articles
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

The authors report the frequency, characteristic clinical symptoms, laboratory alterations and diagnostic criteria of the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) after subarachnoid haemorrhage.

The data on 290 patients with subarachnoid haemorrhage (SAH) during a period of years at the Division of Neurosurgery, University Medical School, Szeged, are analysed. Twenty-seven (9.3%) patients developed SIADH. Thirteen (4.5%) patients had severe and 14 (4.8%) had mild SIADH. The problems of the treatment are discussed in detail and the different therapeutic methods are listed: Nad infusion, water withdrawal and administration of Dilantin, diuretics, mineralocorticosteroids, lithium and demeclocycline. The undesirable side-effects observed accompanying various therapeutic regimen are analysed. The introduction of V2 antagonists into clinical practice appears to be a most perspective procedure.

For study of the pathogenesis of SIADH following SAH, the possibility of treatment with V2 antagonists on an experimental model of SAH in rat was created. A significant water retention and increases in brain water and sodium content were observed in rats with SAH. Plasma AVP levels were also elevated after SAH. AVP plays an important role in the development of antidiuresis following water loading and disturbance of the brain water and electrolyte balance after SAH. Water retention and the higher brain water and sodium accumulation could be totally prevented by administration of a V2 antagonist. These results demonstrate that cerebral oedema generated by artificial cerebral bleeding in rats is significantly reduced following the administration of a highly specific V2 antagonist, suggesting a new approach to the treatment of SIADH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schwartz WB, Bennett W, Curelop S, Bartter FC (1957) A syndrome of renal sodium loss and hyponatremia probably resulting from inappropriate secretion of antidiuretic hormone. Am J Med 23: 529–534

    PubMed  Google Scholar 

  2. Zerbe RL, Stropes L, Robertson GL (1980) Vasopressin function in the syndrome of inappropriate diuresis. Ann Rev Med 31: 315–327

    PubMed  Google Scholar 

  3. Vorherr H, Bradburry MWB, Hoghoughi M, Kleeman CR (1968) Antidiuretic hormone in cerebrospinal fluid during endogenous and exogenous changes in its blood level. Endocrinology 83: 246–250

    PubMed  Google Scholar 

  4. Raskind MA, Weitzman RE, Orenstein H, Fisher DA, Courtney N (1978) Is antidiuretic hormone elevated in psychosis. A pilot study. Biol Psychiatry 13: 385–390

    PubMed  Google Scholar 

  5. Skowsky WR, Kikuchii T (1978) The role of vasopressin in the impaired water excretion of myxoedema. Am J Med 64: 613–622

    PubMed  Google Scholar 

  6. Stassen FL, Berkowitz BB, Huffman WF, Wiebelhaus VD, Kinter LB (1984) Molecular pharmacology of aquaretic agents. In: Puschet JR (ed) Diuretics. Elsevier, Amsterdam, pp 64–71

    Google Scholar 

  7. Goldberg M, Handler JS (1960) Hyponatremia and renal wasting of sodium in patients with malfunction of the central nervous system. N Engl J Med 263: 1037–1043

    PubMed  Google Scholar 

  8. Imbeau SA, Rock W (1976) Syndrome of inappropriate antidiuretic hormone secretion (SIADH) with subarachnoid haemorrhage. Wiss Med J 75: 525–528

    Google Scholar 

  9. Joynt RF, Afifi A, Harrison J (1965) Hyponatremia in subarachnoid haemorrhage. Arch Neurol 13: 633–638

    PubMed  Google Scholar 

  10. Dóczi T, Bende J, Huszka E, Kiss J (1981) Syndrome of inappropriate secretion of antidiuretic hormone after subarachnoid haemorrhage. Neurosurg 9: 394–397

    Google Scholar 

  11. Rap ZM, Chwalbinska-Moneta J (1978) Vasopressin concentration in the blood during acute short-term intracranial hypertension in cats. Adv Neurol 20: 381–388

    PubMed  Google Scholar 

  12. Mather HM, Ang V, Jenkins JS (1981) Vasopressin in plasma and CSF of patients with subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 44: 216–219

    PubMed  Google Scholar 

  13. Schrier RW (1974) “Inappropriate” versus “appropriate” antidiuretic hormone secretion. West J Med 121: 62–64

    PubMed  Google Scholar 

  14. Schrier RW (1985) Treatment of hyponatremia. N Engl J Med 312: 1121–1123

    PubMed  Google Scholar 

  15. Shenkin HA, Bezier HS, Bouzarth WF (1976) Restricted fluid intake: Rational management of the neurosurgical patient. J Neurosurg 45: 432–436

    PubMed  Google Scholar 

  16. Tanay A, Yust I, Perecenschi G, Abramov AL, Aviram A (1979) Long-term treatment of the syndrome of inappropriate antidiuretic hormone secretion with phenytoin. Ann Intern Med 90: 50–52

    PubMed  Google Scholar 

  17. Decaux G, Brimiquelle S, Genette F, Mockel J (1980) Treatment of the syndrome of inappropriate secretion of antidiuretic hormone by urea. Am J Med 69: 99–106

    PubMed  Google Scholar 

  18. Decaux G, Waterlot Y, Genette F, Hullemous R, Demanet JC (1982) Inappropriate secretion of antidiuretic hormone treated with furosemide. BMJ 285: 89–90

    PubMed  Google Scholar 

  19. Dóczi T, Tarjányi J, Huszka E, Kiss J (1982) Syndrome of inappropiate secretion of antidiuretic hormone (SIADH) after head injury. Neurosurgery 10: 685–688

    PubMed  Google Scholar 

  20. Knochel JP, Osborn JR, Cooper EB (1965) Excretion of aldosterone in inappropriate secretion of antidiuretic hormone following head trauma. Metabolism 14: 715–725

    PubMed  Google Scholar 

  21. Cherril DA, Stole RM, Birge JR, Singer I (1975) Demeclocycline treatment in the syndrome of inappropriate antidiuretic hormone secretion. Ann Intern Med 83: 654–656

    PubMed  Google Scholar 

  22. De Troyer A (1977) Demeclocycline treatment of syndrome of inappropriate antidiuretic hormone secretion. JAMA 237: 2723–2726

    PubMed  Google Scholar 

  23. Forrest JN Jr, Cox M, Hong C, Morrison G, Bia M, Singer J (1978) Superiority of demeclocyclin over lithium in the treatment of chronic syndrome of inappropriate secretion of antidiuretic hormone. N Engl J Med 298: 173–177

    PubMed  Google Scholar 

  24. Schrier RW (1978) New treatments for hyponatremia. N Engl J Med 298: 214–215

    PubMed  Google Scholar 

  25. Zegers de Beyl D, Naeije R, De Troyer A (1978) Demeclocycline treatment of water retention in congestive heart failure. BMJ 1: 760

    PubMed  Google Scholar 

  26. Miller PD, Linas SL, Schrier RW (1980) Plasma demeclocycline levels and nephrotoxicity: correlation in hyponatremic cirrhotic patients. JAMA 243: 2513–2515

    PubMed  Google Scholar 

  27. László FA, László F Jr, de Wied D (1991) Pharmacology and clinical perspectives of vasopressin antagonists. Pharmacol Rev 43: 73–108

    PubMed  Google Scholar 

  28. László FA, László F Jr (1994) Clinical perspectives of vasopressin antagonists. Drug News Persp 6: 591–599

    Google Scholar 

  29. Gash DM, Boer GJ (1987) Vasopressin. Plenum, New York

    Google Scholar 

  30. Manning M, Lammek B, Bankowski K, Seto J, Sawyer WH (1985) Synthesis and some of the pharmacological properties of 18 potent O-alkyltyrosine substituted antagonists of the vasopressor responses to arginine vasopressin. J Med Chem 28: 1485–1491

    PubMed  Google Scholar 

  31. Manning M, Bankowski K, Sawyer WH (1987) Selective agonists and antagonists of vasopressin. In: Gash DM, Boer GJ (eds) Vasopressin. Plenum, New York, pp 335–368

    Google Scholar 

  32. Hofbauer KG, Mah SC (1987) Vasopressin antagonists: present and the future. Kidney Int [Suppl] 21: S76-S82

    Google Scholar 

  33. Thibonnier M (1988) Use of vasopressin antagonists in human diseases. Kidney Int 34 [Suppl] 26: S48-S51

    Google Scholar 

  34. László FA, Csáti S, Baláspiri L (1984) Prevention of hypona-traemia and cerebral oedema by the vasopressin antagonist d(CH2)3 Tyr(Et)VAVP in rats treated with pitressin tannate. Acta Endocrinol 106: 56–60

    PubMed  Google Scholar 

  35. Dóczi T, László FA, Szerdahelyi P, Joó F (1984) Involvement of vasopressin in brain oedema formation: further evidence obtained from the Brattleboro diabetes insipidus rat with experimental subarachnoid haemorrhage. Neurosurgery 14: 436–441

    PubMed  Google Scholar 

  36. Kamiya K, Kuiyama L, Symon L (1982) Brain oedema in the acute stage of experimental subarachnoid haemorrhage. Presented at the 5th International Symp on Brain Oedema, Groningen, p 53

  37. Shigeno T, Fritschka E, Schramm J, Brock M (1982) Cerebral oedema following experimental subarachnoid haemorrhage. In: Brock M (ed) Modern neurosurgery. Springer, Berlin Heidelberg New York, pp 396–399

    Google Scholar 

  38. Manning M, Sawyer WH (1989) Discovery, development and some uses of vasopressin and oxytocin antagonists. J Lab Clin Med 114: 617–632

    PubMed  Google Scholar 

  39. Dóczi T, Joó F, Ádám G, Bozoky B, Szerdahelyi P (1986) Blood-brain barrier changes during the acute stage of subarachnoid haemorrhage, as exemplified by a new animal model. Neurosurgery 18: 733–739

    PubMed  Google Scholar 

  40. König TFR, Klippel RA (1967) The rat brain. Krieger, New York

    Google Scholar 

  41. Jójárt I, Laczi F, László FA, Boda K, Csáti S, Janáky T (1987) Hyponatremia and increased secretion of vasopressin induced by vincristine administration in rat. Exp Clin Endocrin 90: 213–220

    Google Scholar 

  42. Symon L (1978) Disordered cerebro-vascular physiology in aneurysmal subarachnoid haemorrhage. Acta Neurochir (Wien) 41: 7–22

    Google Scholar 

  43. Crompton MR (1974) Cerebral infarction following the rupture of cerebral berry aneruysms. Brain 87: 263–280

    Google Scholar 

  44. Du Bulay GH (1980) Cerebral blood flow in man and animals. In: Boulin DJ (ed) Cerebral vasospasm. Wiley, New York, pp 91–111

    Google Scholar 

  45. Fein JM (1975) Cerebral energy metabolism after subarachnoid haemorrhage. Stroke 6: 1–8

    PubMed  Google Scholar 

  46. Grubb RL (1980) Cerebral hemodynamics and metabolism in subarachnoid haemorrhage. In: Wilkins RH (ed) Cerebral arterial spasm. Williams and Wilkins, Baltimore, pp 341–350

    Google Scholar 

  47. Grubb RL Jr, Raichle ME, Eichiling JO, Gado MH (1977) Effects of subarachnoid haemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans. J Neurosurg 46: 446–453

    PubMed  Google Scholar 

  48. Hashi K, Meyer JS, Shimnaru S (1972) Changes in cerebral motor reactivity to CO2 and autoregulation following experimental subarachnoid haemorrhage. J Neurol Sci 17: 15–22

    PubMed  Google Scholar 

  49. Wilkins RH (1980) Cerebral arterial spasm: part B. Biochemistry. Williams and Wilkins, Baltimore, pp 144–229

    Google Scholar 

  50. Holliday MA, Kalayci MN, Harrah J (1968) Factors that limit brain volume changes in response to acute and sustained hyperand hyponatraemia. J Clin Invest 47: 1916–1922

    PubMed  Google Scholar 

  51. Rymer MM, Fishmann RA (1973) Protective adaptation of brain to water intoxication. Arch Neurol 28: 49–52

    PubMed  Google Scholar 

  52. Trojanowski T (1982) Blood-brain barrier changes after experimental subarachnoid haemorrhage. Acta Neurochir (Wien) 60: 45–54

    Google Scholar 

  53. Peterson EW, Cardoso ER (1983) The blood-brain barrier following experimental subarachnoid haemorrhage. J Neurosurg 58: 338–344

    PubMed  Google Scholar 

  54. Peterson EW, Cardoso ER (1983) The blood-brain barrier following experimental subarachnoid haemorrhage: response to mercuric chloride infusion. J Neurosurg 58: 345–351

    PubMed  Google Scholar 

  55. Bradbury MWB (1979) The concept of a blood-brain barrier. Wiley, New York, pp 137–213

    Google Scholar 

  56. Dóczi T, O'Laoire SA, Ambrose J (1984) The significance of contrast enhancement in cranial computed tomography following subarachnoid haemorrhage. J Neurosurg 60: 335–343

    PubMed  Google Scholar 

  57. Dóczi T (1985) The pathogenetic and prognostic significance of blood-brain damage in the acute stage of aneurysmal sub-arachnoid haemorrhage. Clinical and experimental studies. Acta Neurochir 77: 110–132

    Google Scholar 

  58. Rapoport SI (1976) Blood-brain barrier in physiology and medicine. Raven, New York, pp 43–152

    Google Scholar 

  59. Auer L (1977) Brain edema in acute arterial hypertension: I. Macroscopic findings. Acta Neuropathol (Berl) 38: 67–72

    Google Scholar 

  60. Hayakawa T, Walts AG (1975) Experimental subarachnoid haemorrhage from a middle cerebral artery: neurologic deficit, intracranial pressure, and pulse rates. Stroke 8: 417–423

    Google Scholar 

  61. Hossmann KA, Olsson Y (1971) The effect of transient cerebral ischemia on the vascular permeability to protein tracers. Acta Neuropathol (Berl) 18: 103–112

    Google Scholar 

  62. Johansson BB, Strangaard S, Lassen NA (1974) On the pathogenesis of hypertensive encephalopathy: the hypertensive breakthrough of autoregulation of cerebral blood flow with forced vasodilatation, flow increase and blood-brain barrier damage. Circ Res 34/35 [Suppl 1]: 167–171

    Google Scholar 

  63. Johansson BB (1978) Effect of an acute increase of the intravascular pressure on the blood-brain barrier. Stroke 9: 588–590

    PubMed  Google Scholar 

  64. Nagy Z, Mathieson G, Hüttner I (1979) Blood-brain barrier opening to horseradish peroxidase in acute arterial hypertension. Acta Neuropathol (Berl) 48: 45–53

    Google Scholar 

  65. Katzman R, Pappius HM (1973) Brain electrolytes and fluid metabolism. Williams and Wilkins, Baltimore, pp 519–524

    Google Scholar 

  66. Pappius HM (1969) Water spaces. In: Lajtha A (ed) Handbook of neurochemistry. Plenum, New York, pp 68–75

    Google Scholar 

  67. Pappius HM (1979) Evolution of oedema in experimental cerebral infarction. In: Price TR, Nelson E (eds) Cerebrovascular diseases: eleventh princeton Conference. Raven. New York, pp 131–141

    Google Scholar 

  68. Shibata S, Hodge CP, Pappius HM (1974) Effect of experimental ischaemia on cerebral water and electrolytes. J Neurosurg 41: 146–159

    PubMed  Google Scholar 

  69. Van Harreveld A (1966) Brain tissue electrolytes. Butterworth, Washington, pp 56–76

    Google Scholar 

  70. Joó F, Rakonczay Z, Wollemann M (1975) cAMP-mediated regulation of the permeability in the brain capillaries. Experientia 31: 582–583

    PubMed  Google Scholar 

  71. Klatzo I (1967) Neuropathological aspects of brain oedema. J Neuropathol Exp Neurol 26: 1–14

    PubMed  Google Scholar 

  72. Caille JM, Guilbert F, Bidabe AMet al (1980) Enhancement of cerebral infarcts with CT. J Comp Assist Tomogr 4: 73–77

    Google Scholar 

  73. Kendall BE, Pullicino P (1980) Intravascular contrast injection of ischaemic lesions. Part II: Effect on prognosis. Neuroradiology 19: 241–243

    PubMed  Google Scholar 

  74. Skriver EB, Olsen TS (1982) Contrast enhancement of cerebral infarcts. Incidence and clinical value in different states of cerebral infarction. Neuroradiology 23: 259–265

    PubMed  Google Scholar 

  75. Yock DH, Marshall WH (1975) Recent ischaemic brain infarcts at computed tomography: Appearances pre- and post-contrast infusion. Radiology 117: 599–608

    PubMed  Google Scholar 

  76. Peachey LD, Rasmussen H (1961) Structure of the toad's urinary bladder as related to its physiology. J Biophys Biochem Cytol 10: 529–553

    PubMed  Google Scholar 

  77. Raichle ME, Grubb RL Jr, Eichung JO (1977) Osmotically induced changes in brain water permeability. Fed Proc 36: 470

    Google Scholar 

  78. Forsling ML (1971) Bioassay and radioimmunoassay of vasopressin in relation to water metabolism. Proc R Soc Med 64: 1069

    Google Scholar 

  79. Heller H, Hasan SH, Saifo AQ (1968) Antidiuretic activity in the cerebrospinal fluid. J Endocrin 41: 273–280

    Google Scholar 

  80. Jenkins JS, Mather HM, Ang V (1980) Vasopressin in human cerebrospinal fluid. J Clin Endocrinol Metab 50: 364–367

    PubMed  Google Scholar 

  81. Luerssen TG, Robertson GL (1980) Cerebrospinal fluid vasopressin and vasotocin in health and disease. In: Wood JH (ed) Neurobiology of cerebrospinal fluid I. Plenum, New York, pp 613–623

    Google Scholar 

  82. Maroon JC, Nelson PB (1979) Hypovolemia in patients with subarachnoid haemorrhage: therapeutic implications. Neurosurgery 4: 223–226

    Google Scholar 

  83. Pardrige WM, Frank HJ, Cornford EM, Braund LD, Crane FD, Oldendorf WH (1981) Neuropeptides and the blood-brain barrier. Adv Biochem Psychopharmacol 28: 321–328

    PubMed  Google Scholar 

  84. Reppert SM, Artman HG, Swaminathan S, Fisher DA (1981) Vasopressin exhibits a rhythmic daily pattern in cerebrospinal fluid, but not in blood. Science 213: 1265–1267

    Google Scholar 

  85. Sørensen PS, Hammer M, Gjerris F (1982) Cerebrospinal fluid Vasopressin in benign intracranial hypertension. Neurology 32: 1255–1259

    PubMed  Google Scholar 

  86. Wood JH (1982) Neuroendocrinology of cerebrospinal fluid: peptides, steroid, and other hormones. Neurosurgery 11: 293–305

    PubMed  Google Scholar 

  87. Boer GJ, Uylings HBM, Patel AJ, Boer K, Kragten R (1982) The regional impairment of brain development in the Brattleboro diabetes insipidus rat: some vasopressin supplementation studies. Ann NY Acad Sci 394: 703–717

    PubMed  Google Scholar 

  88. Bujis RM, Swaab DF, Dogterom J, van Leeuwen FW (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186: 423–433

    PubMed  Google Scholar 

  89. Courtney N, Raskind M (1983) Vasopressin affect adenylate cyclase activity in rat brain: a possible neuromodulator. Life Sci 32: 591–596

    PubMed  Google Scholar 

  90. Dogterom J, Snijdewint FGM, Buijs RM (1978) The distribution of vasopressin and oxytocin in the rat brain. Neurosci Lett 9: 341–346

    Google Scholar 

  91. Joynt RJ, Feibel JH, Sladek CM (1981) Antidiuretic hormone levels in stroke patients. Ann Neurol 9: 182–184

    PubMed  Google Scholar 

  92. Luerssen TG, Shelton KL, Robertson GL (1977) Evidence for separate origin of CSF vasopressin. Clin Res 25: 14/A (Abstract)

    Google Scholar 

  93. Rossor MN, Iversen LL, Hawthorn J, Ang V, Jenkins JS (1981) Extrahypothalamic vasopressin in human brain. Brain Res 214: 349–355

    PubMed  Google Scholar 

  94. Zaidi SMA, Heller H (1974) Can neurohypophysial hormones cross the blood-cerebrospinal fluid barrier?. J Endocrinol 60: 195–196

    PubMed  Google Scholar 

  95. Gaufin L, Skowsky WR, Goodmann SJ (1977) Release of antidiuretic hormone during mass-induced elevation of intracranial pressure. J Neurosurg 46: 627–637

    PubMed  Google Scholar 

  96. Bohnen N, Twijnstra A, Terwel D, Jolies J (1992) Inverse relationship between plasma vasopressin and intracranial pressure. Horm Metab Res 24: 141–142

    PubMed  Google Scholar 

  97. Raichle ME, Grubb RL Jr (1978) Regulation of brain water permeability by centrally-released vasopressin. Brain Res 143: 191–194

    PubMed  Google Scholar 

  98. Crone C (1963) Permeability of capillaries in various organs as determined by use of indicator diffusion method. Acta Physiol Scand 58: 292–305

    PubMed  Google Scholar 

  99. Dóczi T, Szerdahelyi P, Gulya K, Kiss J (1982) Brain water accumulation after the central administration of vasopressin. Neurosurg 11: 402–407

    PubMed  Google Scholar 

  100. Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197: 1205–1210

    PubMed  Google Scholar 

  101. Lászlo FA, Lengyel Z, Varga CS (1991) Prevention of water retention by the vasopressin antagonist d(CH2)5 Tyr(Et)VAVP in thyroidectomized rats. Exp Clin Endocrin 93: 379–380

    Google Scholar 

  102. Imbert M, Chabardes D, Montegut M, Clique A, Morel F (1975) Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments. Pflugers Arch 354: 213–218

    PubMed  Google Scholar 

  103. Morel F, Imbert-Teboul M, Chabardes D (1987) Receptors to vasopressin and other hormones in the mammalian kidney. Kidney Int 31: 512–520

    PubMed  Google Scholar 

  104. Kim JK, Schrier RW (1985) Cellular effect of arginine vasopressin antagonist on the isolated renal tubule. In: Schrier RW (ed) Vasopressin. Raven, New York, pp 155–158

    Google Scholar 

  105. Kinter LB, Mann W, Heckman G, Huffman WF, Gross M, Stassen FL (1984) Vasopressin antagonist-associated aquaresis in dogs. Abstract. Kidney Int 24: 304

    Google Scholar 

  106. Stassen FL, Erickson RW, Huffman WF, Stefankiewicz J, Sulat L, Wiebelhaus VD (1982) Molecular mechanisms of novel antidiuretic antagonists: Analysis of the effects on vasopressin binding and adenylate cyclase activation in animals and human kidney. J Pharmacol Exp Ther 223: 50–54

    PubMed  Google Scholar 

  107. Stassen FL, Heckman GD, Schmidt DB, Stefankiewicz J, Sulat L, Huffman WF, Moore MM, Kinter LB (1985) Actions of vasopressin antagonists: molecular machnisms. In: Schrier RW (ed) Vasopressin. Raven, New York, pp 145–154

    Google Scholar 

  108. Hofbauer KG, Opperman JR, Mah SC, Baum HP, Wood JM, Kraetz J, Kamber B (1985) Chronic pharmacological blockade of vascular and tubular receptors of arginine vasopressin in rats. In: Schrier RW (eds) Vasopressin. Raven, New York, pp 159–165

    Google Scholar 

  109. Kinter LB, Churchill S, Stassen FL, Moore M, Huffman W (1987) Vasopressin antagonism in the squirrel monkey (Saimiri sciurens). J Pharmacol Exp Ther 241: 797–803

    PubMed  Google Scholar 

  110. Kinter LB, Dubb J, Huffman W, Brennan F, Stassen FL (1985) Potential role of vasopressin antagonists in the treatment of water-retaining disorders. In: Schrier RW (ed) Vasopressin. Raven, New York, pp 553–561

    Google Scholar 

  111. Kinter LB, Dytko G, Ashton D, McDonald J, Huffman W, Stassen FL (1986) Discovery and therapeutical utility of vasopressin antagonists in rats. J Cardiovasc Pharmacol 8 [Suppl7]: S36-S43

    Google Scholar 

  112. Kinter LB, Huffman WF, Wiebelhaus VD, Stassen FL (1984) Renal effects of aquaretic vasopressin analogs in vivo. In: Puschett JB (ed) Diuretics. Elsevier, Amsterdam, pp 72–81

    Google Scholar 

  113. Schrier RW, Kim JK (1984) Vasopressin antagonists. In: Puschett JB (ed) Diuretics. Elsevier, Amsterdam, pp 56–63

    Google Scholar 

  114. Tang AH, Ho PM (1988) A specific antagonist of vasopressin produced plasma-hyperosmolality and reduced ischaemic-induced cerebral oedema in rats. Life Sci 43: 399–403

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

László, F.A., Varga, C. & Dóczi, T. Cerebral oedema after subarachnoid haemorrhage. Pathogenetic significance of vasopressin. Acta neurochir 133, 122–133 (1995). https://doi.org/10.1007/BF01420062

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01420062

Keywords

Navigation