Skip to main content
Log in

Comparison between the more recent techniques for smoothing and derivative assessment in biomechanics

  • Computing and Data Processing
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

When analysising and evaluating human motion, two strictly interconnected problems arise: the data smoothing and the determination of velocities and accelerations from displacement data. Differentiating procedures magnify the noise superimposed on the useful kinematic data. A smoothing procedure is thus required to reduce the measurement noise before the differentiation can be carried out. In the paper two techniques for derivative assessment are presented, tested and compared. One of these is the procedure known as one of the best automatic smoothing and differentiating techniques: generalised cross validatory spline smoothing and differentiation (GCVC). The other, which has recently been presented, features an automatic model-based bandwidth-selection procedure (LAMBDA). The procedures have been tested with signals presented by other authors and available in the literature, by test signals acquired using the ELITE motion analyser and by synthetic data. The results show better or similar performance of LAMBDA compared with GCVC. In the cases in which the natural conditions at the signal boundaries are not met GCVC gives bad results (especially on the third derivative) whereas LAMBDA is not affected at all. Moreover, analysis time is dramatically lower for LAMBDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderssen, R. S. andBloomfield, P. (1974) Numerical differentiation procedures for non-exact data.Numer. Math.,22, 157–182.

    Article  MATH  MathSciNet  Google Scholar 

  • Boccardi, S., Pedotti, A., Rodano, R. andSantambrogio, G. C. (1981) Evaluation of muscular moments at the lower limb joints by an on-line processing of kinematic data and ground reaction.J. Biomech.,14, 33–45.

    Article  Google Scholar 

  • Bose, N. K. (1985)Digital filters. Elsevier Science Publ. Co. Inc.

  • Bresler, B. andFrankel, J. P. (1950) The forces and moments in the leg during level walking.Trans. Am. Soc. Mech. Eng.,72, 27–36.

    Google Scholar 

  • Cappozzo, A., Leo, T. andPedotti, A. (1975) A general computing method for the analysis of human locomotion.J. Biomech.,8, 307–344.

    Article  Google Scholar 

  • Conte, S. D. andde Boor, C. (1982)Elementary numerical analysis. McGraw-Hill.

  • Craven, P. andWahba, G. (1979) Smoothing noisy data with spline functions.Numer. Math.,31, 377–403.

    Article  MATH  MathSciNet  Google Scholar 

  • Cullum, J. (1971) Numerical differentiation and regularisation.SIAM J. Numer. Anal.,8, 254–265.

    Article  MATH  MathSciNet  Google Scholar 

  • Cullum, J. (1979) The effective choice of the smoothing norm in regularisation.Math. Comput.,33, 149–170.

    Article  MATH  MathSciNet  Google Scholar 

  • D'Amico, M. andFerrigno, G. (1990a) Estimation of velocities and accelerations from noisy kinematic data. Proc. ISBS 6th Int. Symp. of Biomechanics in Sports,Kreighbaum, E. andMcNeill, A. (Eds.), Montana University, 133–143.

  • D'Amico, M. andFerrigno, G. (1990b) Technique for the evaluation of derivatives from noisy biomechanical displacement data using a model-based bandwidth-selection procedure.Med. & Biol. Eng. & Comput.,28, 407–415.

    Article  Google Scholar 

  • Drillis, R. andContini, R. (1966) Body segment parameters. Report n. 1166-03, Office of Vocational Rehabilitation, US Dept. Health, Education & Welfare, New York.

    Google Scholar 

  • Ferrigno, G. andPedotti, A. (1985) ELITE: a digital dedicated hardware system for movement analysis via real-time TV signal processing.IEEE Trans.,BME-32, 943–950.

    Google Scholar 

  • Ferrigno, G., Borghese, N. A. andPedotti, A. (1990) Pattern recognition in 3D automatic human motion analysis.ISPRS J. Photogramm. & Remote Sensing,45, 227–246.

    Article  Google Scholar 

  • Hadamard, J. (1902) Sur les problemes aux derives partielles et leures significations physiques.Bull. University of Princeton,13.

  • Hatze, H. (1981) The use of optimally regularised Fourier series for estimating higher-order derivatives of noisy biomechanical data.J. Biomech.,14, 13–18.

    Article  Google Scholar 

  • Hatze, H. (1984) Quantitative analysis, synthesis and simulation of human gait.Human Movement Sci.,3 (1/2), 5–25.

    Article  Google Scholar 

  • Hatze, H., (1990) Data conditioning and differentiation techniques. InBiomechanics of human movement: applications in rehabilitation, sports and ergonomics.Berme, N. andCappozzo, A. (Eds.), Bertec Corp., Wortington, Ohio, 237–248.

    Google Scholar 

  • Huiskes, R. andChao, E. Y. S. (1983) A survey of finite analyses in orthopaedic biomechanics: the first decade.J. Biomech.,16, 385–411.

    Article  Google Scholar 

  • Hutchinson, M. F. andde Hoog, F. R. (1985) Smoothing noisy data with spline function.Numer. Math.,47, 99–106.

    Article  MATH  MathSciNet  Google Scholar 

  • Jensen, R. K. (1978) Estimation of the biomechanical properties of three body types using a photogrammetric method.J. Biomech.,11, 349–358.

    Article  Google Scholar 

  • Jetto, L. (1985) Small-computer procedure for optimal filtering of haemodynamic data.Med. & Biol. Eng. & Comput.,23, 203–208.

    Google Scholar 

  • Laananen, H. andBrooks, C. M. (1978) Determination of the critical parameters for spiked track shoe design through analysis of sprinter motion.Biomechanics VI-A,Asmussen,E. andJorgensen,K. (Eds.), University Park Press, Baltimore, 310–316.

    Google Scholar 

  • Ladin, Z., Flowers, W. C. andMessner, W. (1989) A quantitative comparison of a position measurement system and accelerometry.J. Biomech.,22, 295–308.

    Article  Google Scholar 

  • Lanshammar, H. (1982a) On precision limits for derivatives numerically calculated from noisy data.,15, 459–470.

    Article  Google Scholar 

  • Lanshammar, H. (1982b) On practical evaluation of differentiation techniques for human gait analysis.,15, 99–105.

    Article  Google Scholar 

  • Lesh, M. D., Mansour, J. M. andSimon, S. R. (1979) A gait analysis subsystem for smoothing and differentiation of human motion data.J. Biomech. Eng.,101, 204–212.

    Google Scholar 

  • Lyche, T., Schumaker, L. L. andSepehrnoori, K. (1983) Fortran subroutines for computing smoothing and interpolating natural splines.Adv. Eng. Software,5, (1), 2–5.

    Article  MATH  Google Scholar 

  • Murphy, M. C. andMann, R. W. (1987) A comparison of smoothing and digital filtering/differentiation of kinematic data. IEEE EMBS 9th Ann. Conf., Boston, Massachusetts, 13th–16th Nov., 852–853.

  • Peyton, A. J. (1986) Determination of the moment of inertia of limb segments by a simple method.J. Biomech.,19, 405–410.

    Article  Google Scholar 

  • Pezzack, J. C., Norman, R. W. andWinter, D. A. (1977) An assessment of derivative determining techniques used for motion analysis.,10, 377–382.

    Article  Google Scholar 

  • Reinsch, C. H. (1967) Smoothing by spline functions.Numer. Math.,10, 177–183.

    Article  MATH  MathSciNet  Google Scholar 

  • Reinsch, C. H. (1971) Smoothing by spline functions II.,16, 451–454.

    Article  MathSciNet  Google Scholar 

  • Rice, J. R. andRosenblatt, M. (1983) Smoothing splines: regression, derivatives and deconvolution.Ann. Statist.,11, 141–156.

    MATH  MathSciNet  Google Scholar 

  • Soudan, K. andDierckx, P. (1979) Calculation of derivatives and Fourier coefficients of human motion data, while using spline functions.J. Biomech.,12, 21–26.

    Article  Google Scholar 

  • Tikhonov, A. N. (1963) Solution of incorrectly formulated problems and the regularisation method.Soviet Math. Dokl.,4, 1035–1038.

    Google Scholar 

  • Utreras, F. (1979) Cross validation techniques for smoothing spline function in one or two dimensions. InSmoothing techniques for curve estimation. Lecture notes on mathematics.Gasser, T. andRosenblatt, M. (Eds.), Springer, Berlin, 757.

    Google Scholar 

  • Utreras, F. (1980) A package for smoothing noisy data with splines. Technical Report MA-80-B-209, Department of Mathematics, University of Chile, Santiago.

    Google Scholar 

  • Utreras, F. (1981) Optimal smoothing of noisy data using spline functions.SIAM J. Sci. & Statist. Comput.,2, 349–362.

    Article  MathSciNet  MATH  Google Scholar 

  • Vaughan, C. L. (1982) Smoothing and differentiation of displacement-time data: an application of splines and digital filtering.Int. J. Biomed. Comput.,2, 349–362.

    Google Scholar 

  • Wahba, G. andWold, S. A. (1975a) Completely automatic French curve: fitting spline functions by cross-validation.Comm. Statist.,4, 1–17.

    MATH  MathSciNet  Google Scholar 

  • Wahba, G. andWold, S. A. (1975b) Periodic spline for spectral density estimation: the use of cross-validation for determining the degree of smoothing.,4, 125–141.

    Article  MATH  MathSciNet  Google Scholar 

  • Wehba, G. (1977) Practical approximate solutions to linear operator equations when the data are noisy.SIAM J. Numer. Anal.,14, 651–667.

    Article  MathSciNet  Google Scholar 

  • Wells, R. P. (1981) The projection of the ground reaction forces as a prediction of internal joint moments.Bull. Prosth. Res.,18, 15–19.

    Google Scholar 

  • Winter, D. A. (1987)The biomechanics and motor control of human gait. University of Waterloo Press, Dana Porter Library, Waterloo, Ontario, Canada.

    Google Scholar 

  • Woltring, H. J. (1984) On methodology in the study of human movement. InHuman motor action—Bernstein reassessed.Whiting, H. T. A. (Ed.), North Holland, Amsterdam, 35–73.

    Google Scholar 

  • Woltring, H. J. (1985) On optimal smoothing and derivative estimation from noisy displacement data in biomechanics.Human Movement Sci.,4, 229–245.

    Article  Google Scholar 

  • Woltring, H. J. (1986a) A Fortran package for generalised cross-validatory spline smoothing and differentiation.Adv. Eng. Software,8, 104–113.

    Article  Google Scholar 

  • Woltring, H. J. (1986b) Instantaneous helical axis estimation via natural, cross-validated splines. Proc. 5th Meeting of ESB,Bergmann, G., Kolbel, R. andRohlmann, A. (Eds.), Martinus Nijhoff, Dordrecht, Boston, Lancaster, 121–128.

    Google Scholar 

  • Woltring, H. J. (1991) Review & Rebuttal. In Biomch-L Log 9102. Retrievable by electronic mail from LISTSERV @ UIC. SURFNET.NL with the one-line request: ‘SEND BIOMCH-L LOG 9102’

  • Wood, G. A. (1982) Data smoothing and differentiation procedures in biomechanics.Exercise & Sport Sci. Rev.,10, 308–362.

    Google Scholar 

  • Wood, G. A. andJennings, L. S. (1978) An automatic spline for cinematographic data smoothing Proc. Biomechanische Untersuchungs-Methoden Im Sport, Int. Symp., Karl Marx Stadt, German Democratic Republic, 293–299.

  • Zatsiorsky, V. M. (1980) Biomechanical characteristics of the human body. In Biomechanics and performance in sport.Baumann, W. (Ed.),Bundesinstitut fur Sport Wissenschaft,40, 71–83.

  • Zatsiorsky, V. M. andSeluyanov, V. (1982) The mass and inertia characteristics of the main segments of the human body.Biomechanics VIII-B, Human Kinetics Publishers, Champaign, Illinois, 1152–1159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Amico, M., Ferrigno, G. Comparison between the more recent techniques for smoothing and derivative assessment in biomechanics. Med. Biol. Eng. Comput. 30, 193–204 (1992). https://doi.org/10.1007/BF02446130

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446130

Keywords

Navigation