Skip to main content

Advertisement

Log in

Thalamus pathology in multiple sclerosis: from biology to clinical application

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

There is a broad consensus that MS represents more than an inflammatory disease: it harbors several characteristic aspects of a classical neurodegenerative disorder, i.e. damage to axons, synapses and nerve cell bodies. While the clinician is equipped with appropriate tools to dampen peripheral cell recruitment and, thus, is able to prevent immune-cell driven relapses, effective therapeutic options to prevent the simultaneously progressing neurodegeneration are still missing. Furthermore, while several sophisticated paraclinical methods exist to monitor the inflammatory-driven aspects of the disease, techniques to monitor progression of early neurodegeneration are still in their infancy and have not been convincingly validated. In this review article, we aim to elaborate why the thalamus with its multiple reciprocal connections is sensitive to pathological processes occurring in different brain regions, thus acting as a “barometer” for diffuse brain parenchymal damage in MS. The thalamus might be, thus, an ideal region of interest to test the effectiveness of new neuroprotective MS drugs. Especially, we will address underlying pathological mechanisms operant during thalamus degeneration in MS, such as trans-neuronal or Wallerian degeneration. Furthermore, we aim at giving an overview about different paraclinical methods used to estimate the extent of thalamic pathology in MS patients, and we discuss their limitations. Finally, thalamus involvement in different MS animal models will be described, and their relevance for the design of preclinical trials elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55(4):458–468. doi:10.1002/ana.20016

    PubMed  Google Scholar 

  2. Kipp M, van der Valk P, Amor S (2012) Pathology of multiple sclerosis. CNS Neurol Disord Drug Targets 11(5):506–517

    CAS  PubMed  Google Scholar 

  3. Bo L, Geurts JJ, Mork SJ, van der Valk P (2006) Grey matter pathology in multiple sclerosis. Acta Neurol Scand Suppl 183:48–50. doi:10.1111/j.1600-0404.2006.00615.x

    CAS  PubMed  Google Scholar 

  4. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC, Sandberg-Wollheim M, Sibley W, Thompson A, van den Noort S, Weinshenker BY, Wolinsky JS (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50(1):121–127

    CAS  PubMed  Google Scholar 

  5. Benedict RH, Zivadinov R (2011) Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol 7(6):332–342. doi:10.1038/nrneurol.2011.61

    PubMed  Google Scholar 

  6. Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46(4):907–911

    CAS  PubMed  Google Scholar 

  7. Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, Bruck W, Parisi JE, Scheithauer BW, Giannini C, Weigand SD, Mandrekar J, Ransohoff RM (2011) Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 365(23):2188–2197. doi:10.1056/NEJMoa1100648

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Vercellino M, Plano F, Votta B, Mutani R, Giordana MT, Cavalla P (2005) Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol 64(12):1101–1107

    PubMed  Google Scholar 

  9. Geurts JJ, Barkhof F (2008) Grey matter pathology in multiple sclerosis. Lancet Neurol 7(9):841–851. doi:10.1016/s1474-4422(08)70191-1

    PubMed  Google Scholar 

  10. Peterson JW, Bo L, Mork S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50(3):389–400

    CAS  PubMed  Google Scholar 

  11. Papadopoulos D, Dukes S, Patel R, Nicholas R, Vora A, Reynolds R (2009) Substantial archaeocortical atrophy and neuronal loss in multiple sclerosis. Brain Pathol 19(2):238–253. doi:10.1111/j.1750-3639.2008.00177.x

    PubMed  Google Scholar 

  12. Bo L, Vedeler CA, Nyland H, Trapp BD, Mork SJ (2003) Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler 9(4):323–331

    CAS  PubMed  Google Scholar 

  13. Brink BP, Veerhuis R, Breij EC, van der Valk P, Dijkstra CD, Bo L (2005) The pathology of multiple sclerosis is location-dependent: no significant complement activation is detected in purely cortical lesions. J Neuropathol Exp Neurol 64(2):147–155

    CAS  PubMed  Google Scholar 

  14. Clarner T, Diederichs F, Berger K, Denecke B, Gan L, van der Valk P, Beyer C, Amor S, Kipp M (2012) Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia 60(10):1468–1480. doi:10.1002/glia.22367

    PubMed  Google Scholar 

  15. Brownell B, Hughes JT (1962) The distribution of plaques in the cerebrum in multiple sclerosis. J Neurol Neurosurg Psychiatry 25:315–320

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Horakova D, Dwyer MG, Havrdova E, Cox JL, Dolezal O, Bergsland N, Rimes B, Seidl Z, Vaneckova M, Zivadinov R (2009) Gray matter atrophy and disability progression in patients with early relapsing-remitting multiple sclerosis: a 5-year longitudinal study. J Neurol Sci 282(1–2):112–119. doi:10.1016/j.jns.2008.12.005

    PubMed  Google Scholar 

  17. Fisniku LK, Chard DT, Jackson JS, Anderson VM, Altmann DR, Miszkiel KA, Thompson AJ, Miller DH (2008) Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol 64(3):247–254. doi:10.1002/ana.21423

    PubMed  Google Scholar 

  18. Lavorgna L, Bonavita S, Ippolito D, Lanzillo R, Salemi G, Patti F, Valentino P, Coniglio G, Buccafusca M, Paolicelli D, d’Ambrosio A, Bresciamorra V, Savettieri G, Zappia M, Alfano B, Gallo A, Simone I, Tedeschi G (2014) Clinical and magnetic resonance imaging predictors of disease progression in multiple sclerosis: a nine-year follow-up study. Mult Scler 20(2):220–226. doi:10.1177/1352458513494958

    CAS  PubMed  Google Scholar 

  19. Hagemeier J, Weinstock-Guttman B, Heininen-Brown M, Poloni GU, Bergsland N, Schirda C, Magnano CR, Kennedy C, Carl E, Dwyer MG, Minagar A, Zivadinov R (2013) Gray matter SWI-filtered phase and atrophy are linked to disability in MS. Front Biosci (Elite edition) 5:525–532

    Google Scholar 

  20. Batista S, Zivadinov R, Hoogs M, Bergsland N, Heininen-Brown M, Dwyer MG, Weinstock-Guttman B, Benedict RH (2012) Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis. J Neurol 259(1):139–146. doi:10.1007/s00415-011-6147-1

    PubMed  Google Scholar 

  21. Ota M, Sato N, Nakata Y, Ito K, Kamiya K, Maikusa N, Ogawa M, Okamoto T, Obu S, Noda T, Araki M, Yamamura T, Kunugi H (2013) Abnormalities of cerebral blood flow in multiple sclerosis: a pseudocontinuous arterial spin labeling MRI study. Magn Reson Imaging 31(6):990–995. doi:10.1016/j.mri.2013.03.016

    PubMed  Google Scholar 

  22. Rashid W, Parkes LM, Ingle GT, Chard DT, Toosy AT, Altmann DR, Symms MR, Tofts PS, Thompson AJ, Miller DH (2004) Abnormalities of cerebral perfusion in multiple sclerosis. J Neurol Neurosurg Psychiatry 75(9):1288–1293. doi:10.1136/jnnp.2003.026021

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Inglese M, Park SJ, Johnson G, Babb JS, Miles L, Jaggi H, Herbert J, Grossman RI (2007) Deep gray matter perfusion in multiple sclerosis: dynamic susceptibility contrast perfusion magnetic resonance imaging at 3 T. Arch Neurol 64(2):196–202. doi:10.1001/archneur.64.2.196

    PubMed  Google Scholar 

  24. Cifelli A, Arridge M, Jezzard P, Esiri MM, Palace J, Matthews PM (2002) Thalamic neurodegeneration in multiple sclerosis. Ann Neurol 52(5):650–653. doi:10.1002/ana.10326

    PubMed  Google Scholar 

  25. Houtchens MK, Benedict RH, Killiany R, Sharma J, Jaisani Z, Singh B, Weinstock-Guttman B, Guttmann CR, Bakshi R (2007) Thalamic atrophy and cognition in multiple sclerosis. Neurology 69(12):1213–1223. doi:10.1212/01.wnl.0000276992.17011.b5

    CAS  PubMed  Google Scholar 

  26. Blinkenberg M, Rune K, Jensen CV, Ravnborg M, Kyllingsbaek S, Holm S, Paulson OB, Sorensen PS (2000) Cortical cerebral metabolism correlates with MRI lesion load and cognitive dysfunction in MS. Neurology 54(3):558–564

    CAS  PubMed  Google Scholar 

  27. Derache N, Marie RM, Constans JM, Defer GL (2006) Reduced thalamic and cerebellar rest metabolism in relapsing-remitting multiple sclerosis, a positron emission tomography study: correlations to lesion load. J Neurol Sci 245(1–2):103–109. doi:10.1016/j.jns.2005.09.017

    CAS  PubMed  Google Scholar 

  28. Minagar A, Barnett MH, Benedict RH, Pelletier D, Pirko I, Sahraian MA, Frohman E, Zivadinov R (2013) The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology 80(2):210–219. doi:10.1212/WNL.0b013e31827b910b

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Brex PA, Jenkins R, Fox NC, Crum WR, O’Riordan JI, Plant GT, Miller DH (2000) Detection of ventricular enlargement in patients at the earliest clinical stage of MS. Neurology 54(8):1689–1691

    CAS  PubMed  Google Scholar 

  30. Calabrese M, Rinaldi F, Mattisi I, Bernardi V, Favaretto A, Perini P, Gallo P (2011) The predictive value of gray matter atrophy in clinically isolated syndromes. Neurology 77(3):257–263. doi:10.1212/WNL.0b013e318220abd4

    CAS  PubMed  Google Scholar 

  31. Zivadinov R, Havrdova E, Bergsland N, Tyblova M, Hagemeier J, Seidl Z, Dwyer MG, Vaneckova M, Krasensky J, Carl E, Kalincik T, Horakova D (2013) Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology 268(3):831–841. doi:10.1148/radiol.13122424

    PubMed  Google Scholar 

  32. Schoonheim MM, Popescu V, Rueda Lopes FC, Wiebenga OT, Vrenken H, Douw L, Polman CH, Geurts JJ, Barkhof F (2012) Subcortical atrophy and cognition: sex effects in multiple sclerosis. Neurology 79(17):1754–1761. doi:10.1212/WNL.0b013e3182703f46

    PubMed  Google Scholar 

  33. Benedict RH, Hulst HE, Bergsland N, Schoonheim MM, Dwyer MG, Weinstock-Guttman B, Geurts JJ, Zivadinov R (2013) Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients. Mult Scler 19(11):1478–1484. doi:10.1177/1352458513478675

    PubMed  Google Scholar 

  34. Magon S, Chakravarty MM, Amann M, Weier K, Naegelin Y, Andelova M, Radue EW, Stippich C, Lerch JP, Kappos L, Sprenger T (2014) Label-fusion-segmentation and deformation-based shape analysis of deep gray matter in multiple sclerosis: the impact of thalamic subnuclei on disability. Hum Brain Mapp. doi:10.1002/hbm.22470

    PubMed  Google Scholar 

  35. Rocca MA, Mesaros S, Pagani E, Sormani MP, Comi G, Filippi M (2010) Thalamic damage and long-term progression of disability in multiple sclerosis. Radiology 257(2):463–469. doi:10.1148/radiol.10100326

    PubMed  Google Scholar 

  36. Jones EG (1991) The anatomy of sensory relay functions in the thalamus. Prog Brain Res 87:29–52

    CAS  PubMed  Google Scholar 

  37. Berkley KJ (1986) Specific somatic sensory relays in the mammalian diencephalon. Revue Neurologique 142(4):283–290

    CAS  PubMed  Google Scholar 

  38. Sommer MA (2003) The role of the thalamus in motor control. Curr Opin Neurobiol 13(6):663–670

    CAS  PubMed  Google Scholar 

  39. McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22(18):8117–8132

    CAS  PubMed  Google Scholar 

  40. Shipp S (2003) The functional logic of cortico-pulvinar connections. Philos Trans R Soc Lond B Biol Sci 358(1438):1605–1624. doi:10.1098/rstb.2002.1213

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Sherman SM (2007) The thalamus is more than just a relay. Curr Opin Neurobiol 17(4):417–422. doi:10.1016/j.conb.2007.07.003

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Sherman SM, Koch C (1986) The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Exp Brain Res 63(1):1–20

    CAS  PubMed  Google Scholar 

  43. Masterton RB (1992) Role of the central auditory system in hearing: the new direction. Trends Neurosci 15(8):280–285

    CAS  PubMed  Google Scholar 

  44. Jones EG (1990) Correlation and revised nomenclature of ventral nuclei in the thalamus of human and monkey. Stereotact Funct Neurosurg 54–55:1–20

    PubMed  Google Scholar 

  45. Percheron G, Francois C, Yelnik J (1986) Relations between the basal ganglia and the thalamus of the primate. New morphologic data. New physiopathologic interpretations. Revue Neurologique 142(4):337–353

    CAS  PubMed  Google Scholar 

  46. Child ND, Benarroch EE (2013) Anterior nucleus of the thalamus: functional organization and clinical implications. Neurology 81(21):1869–1876. doi:10.1212/01.wnl.0000436078.95856.56

    PubMed  Google Scholar 

  47. Lim DG, Joe IY, Park YH, Chang SH, Wee YM, Han DJ, Kim SC (2007) Effect of immunosuppressants on the expansion and function of naturally occurring regulatory T cells. Transpl Immunol 18(2):94–100. doi:10.1016/j.trim.2007.05.005

    CAS  PubMed  Google Scholar 

  48. Leussink VI, Jung S, Merschdorf U, Toyka KV, Gold R (2001) High-dose methylprednisolone therapy in multiple sclerosis induces apoptosis in peripheral blood leukocytes. Arch Neurol 58(1):91–97

    CAS  PubMed  Google Scholar 

  49. Frankenberger M, Haussinger K, Ziegler-Heitbrock L (2005) Liposomal methylprednisolone differentially regulates the expression of TNF and IL-10 in human alveolar macrophages. Int Immunopharmacol 5(2):289–299. doi:10.1016/j.intimp.2004.09.033

    CAS  PubMed  Google Scholar 

  50. Rozkova D, Horvath R, Bartunkova J, Spisek R (2006) Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors. Clin Immunol (Orlando, Fla) 120(3):260–271. doi:10.1016/j.clim.2006.04.567

    CAS  Google Scholar 

  51. Kim H, Lee JM, Park JS, Jo SA, Kim YO, Kim CW, Jo I (2008) Dexamethasone coordinately regulates angiopoietin-1 and VEGF: a mechanism of glucocorticoid-induced stabilization of blood–brain barrier. Biochem Biophys Res Commun 372(1):243–248. doi:10.1016/j.bbrc.2008.05.025

    PubMed  Google Scholar 

  52. Kipp M, Amor S (2012) FTY720 on the way from the base camp to the summit of the mountain: relevance for remyelination. Mult Scler 18(3):258–263. doi:10.1177/1352458512438723

    CAS  PubMed  Google Scholar 

  53. Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, Zeng W, Hronowsky X, Buko A, Chollate S, Ellrichmann G, Bruck W, Dawson K, Goelz S, Wiese S, Scannevin RH, Lukashev M, Gold R (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134(Pt 3):678–692. doi:10.1093/brain/awq386

    PubMed  Google Scholar 

  54. Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L, Burtin P (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362(5):387–401. doi:10.1056/NEJMoa0909494

    CAS  PubMed  Google Scholar 

  55. Luessi F, Siffrin V, Zipp F (2012) Neurodegeneration in multiple sclerosis: novel treatment strategies. Expert Rev Neurother 12(9):1061–1076 (quiz 1077). doi:10.1586/ern.12.59

  56. Magliozzi R, Howell OW, Reeves C, Roncaroli F, Nicholas R, Serafini B, Aloisi F, Reynolds R (2010) A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol 68(4):477–493. doi:10.1002/ana.22230

    CAS  PubMed  Google Scholar 

  57. Haider L, Simeonidou C, Steinberger G, Hametner S, Grigoriadis N, Deretzi G, Kovacs GG, Kutzelnigg A, Lassmann H, Frischer JM (2014) Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp-2014-307712

    PubMed Central  PubMed  Google Scholar 

  58. Peterson LK, Fujinami RS (2007) Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J Neuroimmunol 184(1–2):37–44. doi:10.1016/j.jneuroim.2006.11.015

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Nitsch R, Bechmann I, Deisz RA, Haas D, Lehmann TN, Wendling U, Zipp F (2000) Human brain-cell death induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Lancet 356(9232):827–828. doi:10.1016/s0140-6736(00)02659-3

    CAS  PubMed  Google Scholar 

  60. Giuliani F, Goodyer CG, Antel JP, Yong VW (2003) Vulnerability of human neurons to T cell-mediated cytotoxicity. J Immunol 171(1):368–379

    CAS  PubMed  Google Scholar 

  61. Meuth SG, Herrmann AM, Simon OJ, Siffrin V, Melzer N, Bittner S, Meuth P, Langer HF, Hallermann S, Boldakowa N, Herz J, Munsch T, Landgraf P, Aktas O, Heckmann M, Lessmann V, Budde T, Kieseier BC, Zipp F, Wiendl H (2009) Cytotoxic CD8 + T cell-neuron interactions: perforin-dependent electrical silencing precedes but is not causally linked to neuronal cell death. J Neurosci 29(49):15397–15409. doi:10.1523/jneurosci.4339-09.2009

    CAS  PubMed  Google Scholar 

  62. Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6(1):67–70. doi:10.1038/71555

    CAS  PubMed  Google Scholar 

  63. Smith KJ, Blakemore WF, McDonald WI (1979) Central remyelination restores secure conduction. Nature 280(5721):395–396

    CAS  PubMed  Google Scholar 

  64. Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157(1):267–276. doi:10.1016/S0002-9440(10)64537-3

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Irvine KA, Blakemore WF (2008) Remyelination protects axons from demyelination-associated axon degeneration. Brain 131(Pt 6):1464–1477. doi:10.1093/brain/awn080

    CAS  PubMed  Google Scholar 

  66. Duncan ID, Brower A, Kondo Y, Curlee JF Jr, Schultz RD (2009) Extensive remyelination of the CNS leads to functional recovery. Proc Natl Acad Sci USA 106(16):6832–6836. doi:10.1073/pnas.0812500106

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Prineas JW, Kwon EE, Cho ES, Sharer LR (1984) Continual breakdown and regeneration of myelin in progressive multiple sclerosis plaques. Ann N Y Acad Sci 436:11–32

    CAS  PubMed  Google Scholar 

  68. Prineas JW, Connell F (1979) Remyelination in multiple sclerosis. Ann Neurol 5(1):22–31

    CAS  PubMed  Google Scholar 

  69. Kipp M, Victor M, Martino G, Franklin RJ (2012) Endogeneous remyelination: findings in human studies. CNS Neurol Disord Drug Targets 11(5):598–609

    CAS  PubMed  Google Scholar 

  70. Chard DT, Griffin CM, Parker GJ, Kapoor R, Thompson AJ, Miller DH (2002) Brain atrophy in clinically early relapsing-remitting multiple sclerosis. Brain 125(Pt 2):327–337

    CAS  PubMed  Google Scholar 

  71. Xu J, Kao SY, Lee FJ, Song W, Jin LW, Yankner BA (2002) Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8(6):600–606. doi:10.1038/nm0602-600

    CAS  PubMed  Google Scholar 

  72. Matzuk MM, Saper CB (1985) Preservation of hypothalamic dopaminergic neurons in Parkinson’s disease. Ann Neurol 18(5):552–555. doi:10.1002/ana.410180507

    CAS  PubMed  Google Scholar 

  73. Samantaray S, Knaryan VH, Shields DC, Banik NL (2013) Critical role of calpain in spinal cord degeneration in Parkinson’s disease. J Neurochem 127(6):880–890. doi:10.1111/jnc.12374

    CAS  PubMed  Google Scholar 

  74. Saper CB, Wainer BH, German DC (1987) Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease. Neuroscience 23(2):389–398

    CAS  PubMed  Google Scholar 

  75. Ferguson IA, Schweitzer JB, Johnson EM Jr (1990) Basic fibroblast growth factor: receptor-mediated internalization, metabolism, and anterograde axonal transport in retinal ganglion cells. J Neurosci 10(7):2176–2189

    CAS  PubMed  Google Scholar 

  76. Lundh B (1990) Spread of vesicular stomatitis virus along the visual pathways after retinal infection in the mouse. Acta Neuropathol 79(4):395–401

    CAS  PubMed  Google Scholar 

  77. Curanovic D, Enquist LW (2009) Virion-incorporated glycoprotein B mediates transneuronal spread of pseudorabies virus. J Virol 83(16):7796–7804. doi:10.1128/jvi.00745-09

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu MS, Deogracias R, Gundelfinger ED, Kojima M, Nestel S, Frotscher M, Barde YA (2012) BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J Cell Biol 196(6):775–788. doi:10.1083/jcb.201201038

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Figueiredo C, Pais TF, Gomes JR, Chatterjee S (2008) Neuron-microglia crosstalk up-regulates neuronal FGF-2 expression which mediates neuroprotection against excitotoxicity via JNK1/2. J Neurochem 107(1):73–85. doi:10.1111/j.1471-4159.2008.05577.x

    CAS  PubMed  Google Scholar 

  80. McCabe BD, Marques G, Haghighi AP, Fetter RD, Crotty ML, Haerry TE, Goodman CS, O’Connor MB (2003) The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39(2):241–254

    CAS  PubMed  Google Scholar 

  81. Mosca TJ, Hong W, Dani VS, Favaloro V, Luo L (2012) Trans-synaptic Teneurin signalling in neuromuscular synapse organization and target choice. Nature 484(7393):237–241. doi:10.1038/nature10923

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Nikoletopoulou V, Lickert H, Frade JM, Rencurel C, Giallonardo P, Zhang L, Bibel M, Barde YA (2010) Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature 467(7311):59–63. doi:10.1038/nature09336

    CAS  PubMed  Google Scholar 

  83. Koliatsos VE, Dawson TM, Kecojevic A, Zhou Y, Wang YF, Huang KX (2004) Cortical interneurons become activated by deafferentation and instruct the apoptosis of pyramidal neurons. Proc Natl Acad Sci USA 101(39):14264–14269. doi:10.1073/pnas.0404364101

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Gupta N, Ly T, Zhang Q, Kaufman PL, Weinreb RN, Yucel YH (2007) Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. Exp Eye Res 84(1):176–184. doi:10.1016/j.exer.2006.09.013

    CAS  PubMed  Google Scholar 

  85. Weber AJ, Chen H, Hubbard WC, Kaufman PL (2000) Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest Ophthalmol Vis Sci 41(6):1370–1379

    CAS  PubMed  Google Scholar 

  86. Yucel YH, Zhang Q, Gupta N, Kaufman PL, Weinreb RN (2000) Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 118(3):378–384

    CAS  PubMed  Google Scholar 

  87. Crawford ML, Harwerth RS, Smith EL 3rd, Shen F, Carter-Dawson L (2000) Glaucoma in primates: cytochrome oxidase reactivity in parvo- and magnocellular pathways. Invest Ophthalmol Vis Sci 41(7):1791–1802

    CAS  PubMed  Google Scholar 

  88. Lam DY, Kaufman PL, Gabelt BT, To EC, Matsubara JA (2003) Neurochemical correlates of cortical plasticity after unilateral elevated intraocular pressure in a primate model of glaucoma. Invest Ophthalmol Vis Sci 44(6):2573–2581

    PubMed  Google Scholar 

  89. Park HY, Park YG, Cho AH, Park CK (2013) Transneuronal retrograde degeneration of the retinal ganglion cells in patients with cerebral infarction. Ophthalmology 120(6):1292–1299. doi:10.1016/j.ophtha.2012.11.021

    PubMed  Google Scholar 

  90. Cowey A, Alexander I, Stoerig P (2011) Transneuronal retrograde degeneration of retinal ganglion cells and optic tract in hemianopic monkeys and humans. Brain 134(Pt 7):2149–2157. doi:10.1093/brain/awr125

    PubMed  Google Scholar 

  91. Marsala J, Sulla I, Jalc P, Orendacova J (1995) Multiple protracted cauda equina constrictions cause deep derangement in the lumbosacral spinal cord circuitry in the dog. Neurosci Lett 193(2):97–100

    CAS  PubMed  Google Scholar 

  92. Suzuki H, Oyanagi K, Takahashi H, Ikuta F (1995) Evidence for transneuronal degeneration in the spinal cord in man: a quantitative investigation of neurons in the intermediate zone after long-term amputation of the unilateral upper arm. Acta Neuropathol 89(5):464–470

    CAS  PubMed  Google Scholar 

  93. Chung SK, Cohen RS, Pfaff DW (1990) Transneuronal degeneration in the midbrain central gray following chemical lesions in the ventromedial nucleus: a qualitative and quantitative analysis. Neuroscience 38(2):409–426

    CAS  PubMed  Google Scholar 

  94. Mostafapour SP, Del Puerto NM, Rubel EW (2002) bcl-2 Overexpression eliminates deprivation-induced cell death of brainstem auditory neurons. J Neurosci 22(11):4670–4674

  95. Johnson H, Cowey A (2000) Transneuronal retrograde degeneration of retinal ganglion cells following restricted lesions of striate cortex in the monkey. Exp Brain Res 132(2):269–275

    CAS  PubMed  Google Scholar 

  96. Kataoka K, Asai T, Taneda M, Ueshima S, Matsuo O, Kuroda R, Carmeliet P, Collen D (1999) Nigral degeneration following striato-pallidal lesion in tissue type plasminogen activator deficient mice. Neurosci Lett 266(3):220–222

    CAS  PubMed  Google Scholar 

  97. Ginsberg SD, Portera-Cailliau C, Martin LJ (1999) Fimbria–fornix transection and excitotoxicity produce similar neurodegeneration in the septum. Neuroscience 88(4):1059–1071

    CAS  PubMed  Google Scholar 

  98. DeGiorgio LA, DeGiorgio N, Volpe BT (1999) Dizocilpine maleate, MK-801, but not 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline, NBQX, prevents transneuronal degeneration of nigral neurons after neurotoxic striatal-pallidal lesion. Neuroscience 90(1):79–85

    CAS  PubMed  Google Scholar 

  99. Purves D, Snider WD, Voyvodic JT (1988) Trophic regulation of nerve cell morphology and innervation in the autonomic nervous system. Nature 336(6195):123–128. doi:10.1038/336123a0

    CAS  PubMed  Google Scholar 

  100. Baurle J, Guldin W (1998) Vestibular ganglion neurons survive the loss of their cerebellar targets. NeuroReport 9(18):4119–4122

    CAS  PubMed  Google Scholar 

  101. Ghetti B, Norton J, Triarhou LC (1987) Nerve cell atrophy and loss in the inferior olivary complex of “Purkinje cell degeneration” mutant mice. J Comp Neurol 260(3):409–422. doi:10.1002/cne.902600307

    CAS  PubMed  Google Scholar 

  102. Campenot RB, Eng H (2000) Protein synthesis in axons and its possible functions. J Neurocytol 29(11–12):793–798

    CAS  PubMed  Google Scholar 

  103. Droz B, Leblond CP (1962) Migration of proteins along the axons of the sciatic nerve. Science (New York, NY) 137(3535):1047–1048

    CAS  Google Scholar 

  104. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120(Pt 3):393–399

    PubMed  Google Scholar 

  105. Schirmer L, Merkler D, Konig FB, Bruck W, Stadelmann C (2013) Neuroaxonal regeneration is more pronounced in early multiple sclerosis than in traumatic brain injury lesions. Brain Pathol 23(1):2–12. doi:10.1111/j.1750-3639.2012.00608.x

    PubMed  Google Scholar 

  106. Gray E, Rice C, Nightingale H, Ginty M, Hares K, Kemp K, Cohen N, Love S, Scolding N, Wilkins A (2013) Accumulation of cortical hyperphosphorylated neurofilaments as a marker of neurodegeneration in multiple sclerosis. Mult Scler 19(2):153–161. doi:10.1177/1352458512451661

    CAS  PubMed  Google Scholar 

  107. Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10(10):682–696. doi:10.1038/nrm2774

    CAS  PubMed  Google Scholar 

  108. Hares K, Kemp K, Rice C, Gray E, Scolding N, Wilkins A (2013) Reduced axonal motor protein expression in non-lesional grey matter in multiple sclerosis. Mult Scler. doi:10.1177/1352458513508836

    Google Scholar 

  109. Lin TH, Kim JH, Perez-Torres C, Chiang CW, Trinkaus K, Cross AH, Song SK (2014) Axonal transport rate decreased at the onset of optic neuritis in EAE mice. NeuroImage 100:244–253. doi:10.1016/j.neuroimage.2014.06.009

    PubMed  Google Scholar 

  110. Ohno N, Chiang H, Mahad DJ, Kidd GJ, Liu L, Ransohoff RM, Sheng ZH, Komuro H, Trapp BD (2014) Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons. Proc Natl Acad Sci USA 111(27):9953–9958. doi:10.1073/pnas.1401155111

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Stoll G, Jander S, Myers RR (2002) Degeneration and regeneration of the peripheral nervous system: from Augustus Waller’s observations to neuroinflammation. J Peripher Nervous Syst 7(1):13–27

    Google Scholar 

  112. Dziedzic T, Metz I, Dallenga T, Konig FB, Muller S, Stadelmann C, Bruck W (2010) Wallerian degeneration: a major component of early axonal pathology in multiple sclerosis. Brain Pathol 20(5):976–985. doi:10.1111/j.1750-3639.2010.00401.x

    PubMed  Google Scholar 

  113. Casanova B, Martinez-Bisbal MC, Valero C, Celda B, Marti-Bonmati L, Pascual A, Landente L, Coret F (2003) Evidence of Wallerian degeneration in normal appearing white matter in the early stages of relapsing-remitting multiple sclerosis: a HMRS study. J Neurol 250(1):22–28. doi:10.1007/s00415-003-0928-0

    CAS  PubMed  Google Scholar 

  114. Seewann A, Vrenken H, van der Valk P, Blezer EL, Knol DL, Castelijns JA, Polman CH, Pouwels PJ, Barkhof F, Geurts JJ (2009) Diffusely abnormal white matter in chronic multiple sclerosis: imaging and histopathologic analysis. Arch Neurol 66(5):601–609. doi:10.1001/archneurol.2009.57

    PubMed  Google Scholar 

  115. Tsunoda I, Tanaka T, Saijoh Y, Fujinami RS (2007) Targeting inflammatory demyelinating lesions to sites of Wallerian degeneration. Am J Pathol 171(5):1563–1575. doi:10.2353/ajpath.2007.070147

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Kolasinski J, Stagg CJ, Chance SA, Deluca GC, Esiri MM, Chang EH, Palace JA, McNab JA, Jenkinson M, Miller KL, Johansen-Berg H (2012) A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology. Brain 135(Pt 10):2938–2951. doi:10.1093/brain/aws242

    PubMed Central  PubMed  Google Scholar 

  117. Zivadinov R, Bergsland N, Cappellani R, Hagemeier J, Melia R, Carl E, Dwyer MG, Lincoff N, Weinstock-Guttman B, Ramanathan M (2014) Retinal nerve fiber layer thickness and thalamus pathology in multiple sclerosis patients. Eur J Neurol 8:1137–1161. doi:10.1111/ene.12449

    Google Scholar 

  118. Gilbert JJ, Sadler M (1983) Unsuspected multiple sclerosis. Arch Neurol 40(9):533–536

    CAS  PubMed  Google Scholar 

  119. Vercellino M, Masera S, Lorenzatti M, Condello C, Merola A, Mattioda A, Tribolo A, Capello E, Mancardi GL, Mutani R, Giordana MT, Cavalla P (2009) Demyelination, inflammation, and neurodegeneration in multiple sclerosis deep gray matter. J Neuropathol Exp Neurol 68(5):489–502. doi:10.1097/NEN.0b013e3181a19a5a

    PubMed  Google Scholar 

  120. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128(Pt 11):2705–2712. doi:10.1093/brain/awh641

    PubMed  Google Scholar 

  121. Ramasamy DP, Benedict RH, Cox JL, Fritz D, Abdelrahman N, Hussein S, Minagar A, Dwyer MG, Zivadinov R (2009) Extent of cerebellum, subcortical and cortical atrophy in patients with MS: a case–control study. J Neurol Sci 282(1–2):47–54. doi:10.1016/j.jns.2008.12.034

    PubMed  Google Scholar 

  122. Lansley J, Mataix-Cols D, Grau M, Radua J, Sastre-Garriga J (2013) Localized grey matter atrophy in multiple sclerosis: a meta-analysis of voxel-based morphometry studies and associations with functional disability. Neurosci Biobehav Rev 37(5):819–830. doi:10.1016/j.neubiorev.2013.03.006

    CAS  PubMed  Google Scholar 

  123. Sullivan EV, Rosenbloom M, Serventi KL, Pfefferbaum A (2004) Effects of age and sex on volumes of the thalamus, pons, and cortex. Neurobiol Aging 25(2):185–192

    PubMed  Google Scholar 

  124. Audoin B, Zaaraoui W, Reuter F, Rico A, Malikova I, Confort-Gouny S, Cozzone PJ, Pelletier J, Ranjeva JP (2010) Atrophy mainly affects the limbic system and the deep grey matter at the first stage of multiple sclerosis. J Neurol Neurosurg Psychiatry 81(6):690–695. doi:10.1136/jnnp.2009.188748

    PubMed  Google Scholar 

  125. Bergsland N, Horakova D, Dwyer MG, Dolezal O, Seidl ZK, Vaneckova M, Krasensky J, Havrdova E, Zivadinov R (2012) Subcortical and cortical gray matter atrophy in a large sample of patients with clinically isolated syndrome and early relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 33(8):1573–1578. doi:10.3174/ajnr.A3086

    CAS  PubMed  Google Scholar 

  126. Sepulcre J, Sastre-Garriga J, Cercignani M, Ingle GT, Miller DH, Thompson AJ (2006) Regional gray matter atrophy in early primary progressive multiple sclerosis: a voxel-based morphometry study. Arch Neurol 63(8):1175–1180. doi:10.1001/archneur.63.8.1175

    PubMed  Google Scholar 

  127. Mesaros S, Rocca MA, Absinta M, Ghezzi A, Milani N, Moiola L, Veggiotti P, Comi G, Filippi M (2008) Evidence of thalamic gray matter loss in pediatric multiple sclerosis. Neurology 70(13 Pt 2):1107–1112. doi:10.1212/01.wnl.0000291010.54692.85

    CAS  PubMed  Google Scholar 

  128. Aubert-Broche B, Fonov V, Ghassemi R, Narayanan S, Arnold DL, Banwell B, Sled JG, Collins DL (2011) Regional brain atrophy in children with multiple sclerosis. NeuroImage 58(2):409–415. doi:10.1016/j.neuroimage.2011.03.025

    CAS  PubMed  Google Scholar 

  129. Hasan KM, Walimuni IS, Abid H, Frye RE, Ewing-Cobbs L, Wolinsky JS, Narayana PA (2011) Multimodal quantitative magnetic resonance imaging of thalamic development and aging across the human lifespan: implications to neurodegeneration in multiple sclerosis. J Neurosci 31(46):16826–16832. doi:10.1523/jneurosci.4184-11.2011

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Kempton MJ, Ettinger U, Schmechtig A, Winter EM, Smith L, McMorris T, Wilkinson ID, Williams SC, Smith MS (2009) Effects of acute dehydration on brain morphology in healthy humans. Hum Brain Mapp 30(1):291–298. doi:10.1002/hbm.20500

    PubMed  Google Scholar 

  131. Durand-Dubief F, Belaroussi B, Armspach JP, Dufour M, Roggerone S, Vukusic S, Hannoun S, Sappey-Marinier D, Confavreux C, Cotton F (2012) Reliability of longitudinal brain volume loss measurements between 2 sites in patients with multiple sclerosis: comparison of 7 quantification techniques. AJNR Am J Neuroradiol 33(10):1918–1924. doi:10.3174/ajnr.A3107

    CAS  PubMed  Google Scholar 

  132. Derakhshan M, Caramanos Z, Giacomini PS, Narayanan S, Maranzano J, Francis SJ, Arnold DL, Collins DL (2010) Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis. NeuroImage 52(4):1261–1267. doi:10.1016/j.neuroimage.2010.05.029

    PubMed  Google Scholar 

  133. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17(3):1429–1436

    PubMed  Google Scholar 

  134. Boretius S, Escher A, Dallenga T, Wrzos C, Tammer R, Bruck W, Nessler S, Frahm J, Stadelmann C (2012) Assessment of lesion pathology in a new animal model of MS by multiparametric MRI and DTI. NeuroImage 59(3):2678–2688. doi:10.1016/j.neuroimage.2011.08.051

    PubMed  Google Scholar 

  135. Fisher M, Albers GW (2013) Advanced imaging to extend the therapeutic time window of acute ischemic stroke. Ann Neurol 73(1):4–9. doi:10.1002/ana.23744

    PubMed  Google Scholar 

  136. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223. doi:10.1148/rg.26si065510

    PubMed  Google Scholar 

  137. Filippi M, van den Heuvel MP, Fornito A, He Y, Hulshoff Pol HE, Agosta F, Comi G, Rocca MA (2013) Assessment of system dysfunction in the brain through MRI-based connectomics. Lancet Neurol 12(12):1189–1199. doi:10.1016/s1474-4422(13)70144-3

    PubMed  Google Scholar 

  138. Rovaris M, Gass A, Bammer R, Hickman SJ, Ciccarelli O, Miller DH, Filippi M (2005) Diffusion MRI in multiple sclerosis. Neurology 65(10):1526–1532. doi:10.1212/01.wnl.0000184471.83948.e0

    CAS  PubMed  Google Scholar 

  139. Thiessen JD, Zhang Y, Zhang H, Wang L, Buist R, Del Bigio MR, Kong J, Li XM, Martin M (2013) Quantitative MRI and ultrastructural examination of the cuprizone mouse model of demyelination. NMR Biomed 26(11):1562–1581. doi:10.1002/nbm.2992

    CAS  PubMed  Google Scholar 

  140. Fink F, Klein J, Lanz M, Mitrovics T, Lentschig M, Hahn HK, Hildebrandt H (2010) Comparison of diffusion tensor-based tractography and quantified brain atrophy for analyzing demyelination and axonal loss in MS. J Neuroimaging 20(4):334–344. doi:10.1111/j.1552-6569.2009.00377.x

    PubMed  Google Scholar 

  141. Rocca MA, Mesaros S, Preziosa P, Pagani E, Stosic-Opincal T, Dujmovic-Basuroski I, Drulovic J, Filippi M (2013) Wallerian and trans-synaptic degeneration contribute to optic radiation damage in multiple sclerosis: a diffusion tensor MRI study. Mult Scler 19(12):1610–1617. doi:10.1177/1352458513485146

    PubMed  Google Scholar 

  142. Budde MD, Xie M, Cross AH, Song SK (2009) Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. J Neurosci 29(9):2805–2813. doi:10.1523/jneurosci.4605-08.2009

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Natarajan R, Hagman S, Wu X, Hakulinen U, Raunio M, Helminen M, Rossi M, Dastidar P, Elovaara I (2013) Diffusion tensor imaging in NAWM and NADGM in MS and CIS: association with candidate biomarkers in sera. Mult Scler Int 2013:265259. doi:10.1155/2013/265259

    PubMed Central  PubMed  Google Scholar 

  144. Senda J, Watanabe H, Tsuboi T, Hara K, Watanabe H, Nakamura R, Ito M, Atsuta N, Tanaka F, Naganawa S, Sobue G (2012) MRI mean diffusivity detects widespread brain degeneration in multiple sclerosis. J Neurol Sci 319(1–2):105–110. doi:10.1016/j.jns.2012.04.019

    PubMed  Google Scholar 

  145. Cappellani R, Bergsland N, Weinstock-Guttman B, Kennedy C, Carl E, Ramasamy DP, Hagemeier J, Dwyer MG, Patti F, Zivadinov R (2014) Diffusion tensor MRI alterations of subcortical deep gray matter in clinically isolated syndrome. J Neurol Sci 338(1–2):128–134. doi:10.1016/j.jns.2013.12.031

    PubMed  Google Scholar 

  146. Mesaros S, Rocca MA, Pagani E, Sormani MP, Petrolini M, Comi G, Filippi M (2011) Thalamic damage predicts the evolution of primary-progressive multiple sclerosis at 5 years. AJNR Am J Neuroradiol 32(6):1016–1020. doi:10.3174/ajnr.A2430

    CAS  PubMed  Google Scholar 

  147. Fabiano AJ, Sharma J, Weinstock-Guttman B, Munschauer FE 3rd, Benedict RH, Zivadinov R, Bakshi R (2003) Thalamic involvement in multiple sclerosis: a diffusion-weighted magnetic resonance imaging study. J Neuroimaging 13(4):307–314

    PubMed  Google Scholar 

  148. Tovar-Moll F, Evangelou IE, Chiu AW, Richert ND, Ostuni JL, Ohayon JM, Auh S, Ehrmantraut M, Talagala SL, McFarland HF, Bagnato F (2009) Thalamic involvement and its impact on clinical disability in patients with multiple sclerosis: a diffusion tensor imaging study at 3T. AJNR Am J Neuroradiol 30(7):1380–1386. doi:10.3174/ajnr.A1564

    CAS  PubMed  Google Scholar 

  149. Papadaki EZ, Mastorodemos VC, Amanakis EZ, Tsekouras KC, Papadakis AE, Tsavalas ND, Simos PG, Karantanas AH, Plaitakis A, Maris TG (2012) White matter and deep gray matter hemodynamic changes in multiple sclerosis patients with clinically isolated syndrome. Magn Reson Med 68(6):1932–1942. doi:10.1002/mrm.24194

    PubMed  Google Scholar 

  150. Papadaki EZ, Simos PG, Panou T, Mastorodemos VC, Maris TG, Karantanas AH, Plaitakis A (2014) Hemodynamic evidence linking cognitive deficits in clinically isolated syndrome to regional brain inflammation. Eur J Neurol 21(3):499–505. doi:10.1111/ene.12338

    CAS  PubMed  Google Scholar 

  151. van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20(8):519–534. doi:10.1016/j.euroneuro.2010.03.008

    PubMed  Google Scholar 

  152. Dogonowski AM, Siebner HR, Sorensen PS, Wu X, Biswal B, Paulson OB, Dyrby TB, Skimminge A, Blinkenberg M, Madsen KH (2013) Expanded functional coupling of subcortical nuclei with the motor resting-state network in multiple sclerosis. Mult Scler 19(5):559–566. doi:10.1177/1352458512460416

    PubMed  Google Scholar 

  153. Tona F, Petsas N, Sbardella E, Prosperini L, Carmellini M, Pozzilli C, Pantano P (2014) Multiple sclerosis: altered thalamic resting-state functional connectivity and its effect on cognitive function. Radiology 271(3):814–821. doi:10.1148/radiol.14131688

    PubMed  Google Scholar 

  154. Harirchian MH, Rezvanizadeh A, Fakhri M, Oghabian MA, Ghoreishi A, Zarei M, Firouznia K, Ghanaati H (2010) Non-invasive brain mapping of motor-related areas of four limbs in patients with clinically isolated syndrome compared to healthy normal controls. J Clin Neurosci 17(6):736–741. doi:10.1016/j.jocn.2009.10.010

    PubMed  Google Scholar 

  155. Muhlert N, Atzori M, De Vita E, Thomas DL, Samson RS, Wheeler-Kingshott CA, Geurts JJ, Miller DH, Thompson AJ, Ciccarelli O (2014) Memory in multiple sclerosis is linked to glutamate concentration in grey matter regions. J Neurol Neurosurg Psychiatry 85(8):833–839. doi:10.1136/jnnp-2013-306662

    PubMed Central  PubMed  Google Scholar 

  156. Wylezinska M, Cifelli A, Jezzard P, Palace J, Alecci M, Matthews PM (2003) Thalamic neurodegeneration in relapsing-remitting multiple sclerosis. Neurology 60(12):1949–1954

    CAS  PubMed  Google Scholar 

  157. Geurts JJ, Reuling IE, Vrenken H, Uitdehaag BM, Polman CH, Castelijns JA, Barkhof F, Pouwels PJ (2006) MR spectroscopic evidence for thalamic and hippocampal, but not cortical, damage in multiple sclerosis. Magn Reson Med 55(3):478–483. doi:10.1002/mrm.20792

    CAS  PubMed  Google Scholar 

  158. van der Star BJ, Vogel DY, Kipp M, Puentes F, Baker D, Amor S (2012) In vitro and in vivo models of multiple sclerosis. CNS Neurol Disord Drug Targets 11(5):570–588

    PubMed  Google Scholar 

  159. Kipp M, Clarner T, Dang J, Copray S, Beyer C (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118(6):723–736. doi:10.1007/s00401-009-0591-3

    PubMed  Google Scholar 

  160. Reindl M, Di Pauli F, Rostasy K, Berger T (2013) The spectrum of MOG autoantibody-associated demyelinating diseases. Nat Rev Neurol 9(8):455–461. doi:10.1038/nrneurol.2013.118

    CAS  PubMed  Google Scholar 

  161. Simmons SB, Pierson ER, Lee SY, Goverman JM (2013) Modeling the heterogeneity of multiple sclerosis in animals. Trends Immunol 34(8):410–422. doi:10.1016/j.it.2013.04.006

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Amor S, Scallan MF, Morris MM, Dyson H, Fazakerley JK (1996) Role of immune responses in protection and pathogenesis during Semliki Forest virus encephalitis. J Gen Virol 77(Pt 2):281–291

    CAS  PubMed  Google Scholar 

  163. Fujinami RS, Rosenthal A, Lampert PW, Zurbriggen A, Yamada M (1989) Survival of athymic (nu/nu) mice after Theiler’s murine encephalomyelitis virus infection by passive administration of neutralizing monoclonal antibody. J Virol 63(5):2081–2087

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Houtman JJ, Fleming JO (1996) Pathogenesis of mouse hepatitis virus-induced demyelination. J Neurovirol 2(6):361–376

    CAS  PubMed  Google Scholar 

  165. Acs P, Kipp M, Norkute A, Johann S, Clarner T, Braun A, Berente Z, Komoly S, Beyer C (2009) 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia 57(8):807–814. doi:10.1002/glia.20806

    PubMed  Google Scholar 

  166. Perlman S, Jacobsen G, Moore S (1988) Regional localization of virus in the central nervous system of mice persistently infected with murine coronavirus JHM. Virology 166(2):328–338

    CAS  PubMed  Google Scholar 

  167. Lipton HL (1975) Theiler’s virus infection in mice: an unusual biphasic disease process leading to demyelination. Infect Immun 11(5):1147–1155

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Njenga MK, Pavelko KD, Baisch J, Lin X, David C, Leibowitz J, Rodriguez M (1996) Theiler’s virus persistence and demyelination in major histocompatibility complex class II-deficient mice. J Virol 70(3):1729–1737

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Pirko I, Johnson AJ, Lohrey AK, Chen Y, Ying J (2009) Deep gray matter T2 hypointensity correlates with disability in a murine model of MS. J Neurol Sci 282(1–2):34–38. doi:10.1016/j.jns.2008.12.013

    PubMed Central  PubMed  Google Scholar 

  170. Levy Barazany H, Barazany D, Puckett L, Blanga-Kanfi S, Borenstein-Auerbach N, Yang K, Peron JP, Weiner HL, Frenkel D (2014) Brain MRI of nasal MOG therapeutic effect in relapsing-progressive EAE. Exp Neurol 255C:63–70. doi:10.1016/j.expneurol.2014.02.010

    Google Scholar 

  171. Kim DY, Jeoung D, Ro JY (2010) Signaling pathways in the activation of mast cells cocultured with astrocytes and colocalization of both cells in experimental allergic encephalomyelitis. J Immunol 185(1):273–283. doi:10.4049/jimmunol.1000991

    CAS  PubMed  Google Scholar 

  172. Cook LL, Persinger MA, Koren SA (2000) Differential effects of low frequency, low intensity (<6 mG) nocturnal magnetic fields upon infiltration of mononuclear cells and numbers of mast cells in Lewis rat brains. Toxicol Lett 118(1–2):9–19

    CAS  PubMed  Google Scholar 

  173. Dimitriadou V, Pang X, Theoharides TC (2000) Hydroxyzine inhibits experimental allergic encephalomyelitis (EAE) and associated brain mast cell activation. Int J Immunopharmacol 22(9):673–684

    CAS  PubMed  Google Scholar 

  174. Calza L, Giardino L, Pozza M, Micera A, Aloe L (1997) Time-course changes of nerve growth factor, corticotropin-releasing hormone, and nitric oxide synthase isoforms and their possible role in the development of inflammatory response in experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 94(7):3368–3373

    PubMed Central  CAS  PubMed  Google Scholar 

  175. De Simone R, Micera A, Tirassa P, Aloe L (1996) mRNA for NGF and p75 in the central nervous system of rats affected by experimental allergic encephalomyelitis. Neuropathol Appl Neurobiol 22(1):54–59

    PubMed  Google Scholar 

  176. Micera A, De Simone R, Aloe L (1995) Elevated levels of nerve growth factor in the thalamus and spinal cord of rats affected by experimental allergic encephalomyelitis. Arch Ital Biol 133(2):131–142

    CAS  PubMed  Google Scholar 

  177. Meuth SG, Kanyshkov T, Melzer N, Bittner S, Kieseier BC, Budde T, Wiendl H (2008) Altered neuronal expression of TASK1 and TASK3 potassium channels in rodent and human autoimmune CNS inflammation. Neurosci Lett 446(2–3):133–138. doi:10.1016/j.neulet.2008.09.038

    CAS  PubMed  Google Scholar 

  178. Orr EL, Aschenbrenner JE, Oakford LX, Jackson FL, Stanley NC (1994) Changes in brain and spinal cord water content during recurrent experimental autoimmune encephalomyelitis in female Lewis rats. Mol Chem Neuropathol 22(3):185–195

    CAS  PubMed  Google Scholar 

  179. Kesterson JW, Carlton WW (1971) Histopathologic and enzyme histochemical observations of the cuprizone-induced brain edema. Exp Mol Pathol 15(1):82–96

    CAS  PubMed  Google Scholar 

  180. Yang HJ, Wang H, Zhang Y, Xiao L, Clough RW, Browning R, Li XM, Xu H (2009) Region-specific susceptibilities to cuprizone-induced lesions in the mouse forebrain: implications for the pathophysiology of schizophrenia. Brain Res 1270:121–130. doi:10.1016/j.brainres.2009.03.011

    CAS  PubMed  Google Scholar 

  181. Xuan Y, Yan G, Peng H, Wu R, Xu H (2014) Concurrent changes in H MRS metabolites and antioxidant enzymes in the brain of C57BL/6 mouse short-termly exposed to cuprizone: possible implications for schizophrenia. Neurochem Int. doi:10.1016/j.neuint.2014.02.004

    PubMed  Google Scholar 

Download references

Acknowledgments

M. Kipp and N. Wagenknecht received financial support from Novartis/Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kipp.

Additional information

J. Wuerfel and O. Nikoubashman contributed equally as senior authors of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kipp, M., Wagenknecht, N., Beyer, C. et al. Thalamus pathology in multiple sclerosis: from biology to clinical application. Cell. Mol. Life Sci. 72, 1127–1147 (2015). https://doi.org/10.1007/s00018-014-1787-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1787-9

Keywords

Navigation