Skip to main content
Log in

Dysfunction of dysferlin-deficient hearts

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Mutations in the gene encoding dysferlin cause limb-girdle muscular dystrophy 2B (LGMD2B), a disorder that is believed to spare the heart. We observed dilated cardiomyopathy in two out of seven LGMD2B patients and cardiac abnormalities in three others. Cardiac biopsies showed that dysferlin was completely absent from the sarcolemma and appeared to be trapped within the cardiomyocytes. SJL/J mice (33-week-old) had diminished end-systolic pressure and reduced dP/dt; however, the hearts were histologically normal. Gene expression profiles of cardiac tissue were obtained and later confirmed by quantitative RT-PCR. Dysferlin-deficient and control mice had different gene expression patterns in terms of cardiomyocyte Z-disc and signal transduction proteins. CapZ, LIM-domain-binding protein 3 (LDB3, MLP), cypher (ZASP), desmin, and the cardiac ankyrin-repeated protein (CARP) were differentially expressed, compared to controls. Mechanical stress induced by the nonselective beta-adrenergic agonist isoproterenol (5 mg/kg body weight) given daily for 10 days resulted in reduced fractional shortening and increased cardiac fibrosis in SJL/J mice as compared to controls. Isoproterenol also caused metalloproteinase-2 upregulation in SJL/J mice. In A/J mice, the effect of isoproterenol injection was even more dramatic and lead to premature death as well as marked sarcolemmal injury as demonstrated by Evans blue dye penetration. Our data suggest that disturbances in dysferlin as well as Z-line proteins and transcription factors particularly under mechanical stress cause cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-Bueno MR, Moreira ES, Zatz M, Beckmann JS, Bushby K (1998) A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 20:37–42

    Article  PubMed  CAS  Google Scholar 

  2. Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, Bohlega S, Culper EJ, Amato AA, Bossie K, Oeltjen J, Bejaoui K, McKenna-Yasek D, Hosler BA, Schurr E, Arahata K, de Jong PJ, Brown RH Jr (1998) Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 20:31–36

    Article  PubMed  CAS  Google Scholar 

  3. Aoki M, Liu J, Richard I, Bashir R, Britton S, Keers SM, Oeltjen J, Brown HE, Marchand S, Bourg N, Beley C, McKenna-Yasek D, Arahata K, Bohlega S, Cupler E, Illa I, Majneh I, Barohn RJ, Urtizberea JA, Fardeau M, Amato A, Angelini C, Bushby K, Beckmann JS, Brown RH Jr (2001) Genomic organization of the dysferlin gene and novel mutations in Miyoshi myopathy. Neurology 57:271–278

    Article  PubMed  CAS  Google Scholar 

  4. Davis DB, Delmonte AJ, Ly CT, McNally EM (2000) Myoferlin, a candidate gene and potential modifier of muscular dystrophy. Hum Mol Genet 9:217–226

    Article  PubMed  CAS  Google Scholar 

  5. Lennon NJ, Kho A, Bacskai BJ, Perlmutter SL, Hyman BT, Brown RH Jr (2003) Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J Biol Chem 278:50466–50473

    Article  PubMed  CAS  Google Scholar 

  6. Matsuda C, Hayashi YK, Ogawa M, Aoki M, Murayama K, Nishino I, Nonaka I, Arahata K, Brown RH Jr (2001) The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum Mol Genet 10:1761–1766

    Article  PubMed  CAS  Google Scholar 

  7. Matsuda C, Kameyama K, Tagawa K, Ogawa M, Suzuki A, Yamaji S, Okamoto H, Nishino I, Hayashi YK (2005) Dysferlin interacts with affixin (beta-parvin) at the sarcolemma. J Neuropathol Exp Neurol 64:334–340

    PubMed  CAS  Google Scholar 

  8. Huang Y, Laval SH, van Remoortere A, Baudier J, Benaud C, Anderson LV, Straub V, Deelder A, Frants RR, den Dunnen JT, Bushby K, van der Maarel SM (2007) AHNAK, a novel component of the dysferlin protein complex, redistributes to the cytoplasm with dysferlin during skeletal muscle regeneration. FASEB J 21:732–742

    Article  PubMed  Google Scholar 

  9. Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL, Campbell KP (2003) Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423:168–172

    Article  PubMed  CAS  Google Scholar 

  10. Ho M, Post CM, Donahue LR, Lidov HG, Bronson RT, Goolsby H, Watkins SC, Cox GA, Brown RH Jr (2004) Disruption of muscle membrane and phenotype divergence in two novel mouse models of dysferlin deficiency. Hum Mol Genet 13:1999–2010

    Article  PubMed  CAS  Google Scholar 

  11. Wenzel K, Zabojszcza J, Carl M, Taubert S, Lass A, Harris CL, Ho M, Schulz H, Hummel O, Hubner N, Osterziel KJ, Spuler S (2005) Increased susceptibility to complement attack due to down-regulation of decay-accelerating factor/CD55 in dysferlin-deficient muscular dystrophy. J Immunol 175:6219–6225

    PubMed  CAS  Google Scholar 

  12. Anderson LV, Davison K, Moss JA, Young C, Cullen MJ, Walsh J, Johnson MA, Bashir R, Britton S, Keers S, Argov Z, Mahjneh I, Fougerousse F, Beckmann JS, Bushby KM (1999) Dysferlin is a plasma membrane protein and is expressed early in human development. Hum Mol Genet 8:855–861

    Article  PubMed  CAS  Google Scholar 

  13. Cagliani R, Fortunato F, Giorda R, Rodolico C, Bonaglia MC, Sironi M, D’Angelo MG, Prelle A, Locatelli F, Toscano A, Bresolin N, Comi GP (2003) Molecular analysis of LGMD-2B and MM patients: identification of novel DYSF mutations and possible founder effect in the Italian population. Neuromuscul Disord 13:788–795

    Article  PubMed  CAS  Google Scholar 

  14. Bittner RE, Anderson LV, Burkhardt E, Bashir R, Vafiadaki E, Ivanova S, Raffelsberger T, Maerk I, Hoger H, Jung M, Karbasiyan M, Storch M, Lassmann H, Moss JA, Davison K, Harrison R, Bushby KM, Reis A (1999) Dysferlin deletion in SJL mice (SJL-Dysf) defines a natural model for limb girdle muscular dystrophy 2B. Nat Genet 23:141–142

    Article  PubMed  CAS  Google Scholar 

  15. Vafiadaki E, Reis A, Keers S, Harrison R, Anderson LV, Raffelsberger T, Ivanova S, Hoger H, Bittner RE, Bushby K, Bashir R (2001) Cloning of the mouse dysferlin gene and genomic characterization of the SJL-Dysf mutation. Neuroreport 12:625–629

    Article  PubMed  CAS  Google Scholar 

  16. Wenzel K, Carl M, Perrot A, Zabojszcza J, Assadi M, Ebeling M, Geier C, Robinson PN, Kress W, Osterziel KJ, Spuler S (2006) Novel sequence variants in dysferlin-deficient muscular dystrophy leading to mRNA decay and possible C2-domain misfolding. Hum Mutat 27:599–600

    Article  PubMed  Google Scholar 

  17. Diers A, Carl M, Stoltenburg-Didinger G, Vorgerd M, Spuler S (2007) Painful enlargement of the calf muscles in limb girdle muscular dystrophy type 2B (LGMD2B) with a novel compound heterozygous mutation in DYSF. Neuromuscul Disord 17:157–162

    Article  PubMed  Google Scholar 

  18. Sahn DJ, DeMaria A, Kisslo J, Weyman A (1978) Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 58:1072–1083

    PubMed  CAS  Google Scholar 

  19. Mestroni L, Maisch B, McKenna WJ, Schwartz K, Charron P, Rocco C, Tesson F, Richter A, Wilke A, Komajda M (1999) Guidelines for the study of familial dilated cardiomyopathies. Collaborative Research Group of the European Human and Capital Mobility Project on Familial Dilated Cardiomyopathy. Eur Heart J 20:93–102

    Article  PubMed  CAS  Google Scholar 

  20. Georgakopoulos D, Christe ME, Giewat M, Seidman CM, Seidman JG, Kass DA (1999) The pathogenesis of familial hypertrophic cardiomyopathy: early and evolving effects from an alpha-cardiac myosin heavy chain missense mutation. Nat Med 5:327–330

    Article  PubMed  CAS  Google Scholar 

  21. Yang B, Larson DF, Watson R (1999) Age-related left ventricular function in the mouse: analysis based on in vivo pressure-volume relationships. Am J Physiol 277:H1906–H1913

    PubMed  CAS  Google Scholar 

  22. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  PubMed  Google Scholar 

  23. Jain N, Thatte J, Braciale T, Ley K, O’Connell M, Lee JK (2003) Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics 19:1945–1951

    Article  PubMed  CAS  Google Scholar 

  24. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  25. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  26. Finke J, Fritzen R, Ternes P, Lange W, Dolken G (1993) An improved strategy and a useful housekeeping gene for RNA analysis from formalin-fixed, paraffin-embedded tissues by PCR. Biotechniques 14:448–453

    PubMed  CAS  Google Scholar 

  27. Fink L, Stahl U, Ermert L, Kummer W, Seeger W, Bohle RM (1999) Rat porphobilinogen deaminase gene: a pseudogene-free internal standard for laser-assisted cell picking. Biotechniques 26:510–516

    PubMed  CAS  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  29. Pyle WG, Solaro RJ (2004) At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ Res 94:296–305

    Article  PubMed  CAS  Google Scholar 

  30. Arber S, Hunter JJ, Ross J Jr, Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88:393–403

    Article  PubMed  CAS  Google Scholar 

  31. Huang C, Zhou Q, Liang P, Hollander MS, Sheikh F, Li X, Greaser M, Shelton GD, Evans S, Chen J (2003) Characterization and in vivo functional analysis of splice variants of cypher. J Biol Chem 278:7360–7365

    Article  PubMed  CAS  Google Scholar 

  32. Pashmforoush M, Pomies P, Peterson KL, Kubalak S, Ross J Jr, Hefti A, Aebi U, Beckerle MC, Chien KR (2001) Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat Med 7:591–597

    Article  PubMed  CAS  Google Scholar 

  33. Geier C, Perrot A, Ozcelik C, Binner P, Counsell D, Hoffmann K, Pilz B, Martiniak Y, Gehmlich K, van der Ven PF, Furst DO, Vornwald A, von Hodenberg E, Nurnberg P, Scheffold T, Dietz R, Osterziel KJ (2003) Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation 107:1390–1395

    Article  PubMed  CAS  Google Scholar 

  34. Hayashi T, Arimura T, Itoh-Satoh M, Ueda K, Hohda S, Inagaki N, Takahashi M, Hori H, Yasunami M, Nishi H, Koga Y, Nakamura H, Matsuzaki M, Choi BY, Bae SW, You CW, Han KH, Park JE, Knoll R, Hoshijima M, Chien KR, Kimura A (2004) Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol 44:2192–2201

    Article  PubMed  CAS  Google Scholar 

  35. Milner DJ, Taffet GE, Wang X, Pham T, Tamura T, Hartley C, Gerdes AM, Capetanaki Y (1999) The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J Mol Cell Cardiol 31:2063–2076

    Article  PubMed  CAS  Google Scholar 

  36. Pyle WG, Hart MC, Cooper JA, Sumandea MP, de Tombe PP, Solaro RJ (2002) Actin capping protein: an essential element in protein kinase signaling to the myofilaments. Circ Res 90:1299–1306

    Article  PubMed  CAS  Google Scholar 

  37. Arber S, Halder G, Caroni P (1994) Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell 79:221–231

    Article  PubMed  CAS  Google Scholar 

  38. Knoll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, Hayashi T, Shiga N, Yasukawa H, Schaper W, McKenna W, Yokoyama M, Schork NJ, Omens JH, McCulloch AD, Kimura A, Gregorio CC, Poller W, Schaper J, Schultheiss HP, Chien KR (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111:943–955

    Article  PubMed  CAS  Google Scholar 

  39. Heineke J, Ruetten H, Willenbockel C, Gross SC, Naguib M, Schaefer A, Kempf T, Hilfiker-Kleiner D, Caroni P, Kraft T, Kaiser RA, Molkentin JD, Drexler H, Wollert KC (2005) Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proc Natl Acad Sci U S A 102:1655–1660

    Article  PubMed  CAS  Google Scholar 

  40. Zhou Q, Ruiz-Lozano P, Martone ME, Chen J (1999) Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. J Biol Chem 274:19807–19813

    Article  PubMed  CAS  Google Scholar 

  41. Nakagawa N, Hoshijima M, Oyasu M, Saito N, Tanizawa K, Kuroda S (2000) ENH, containing PDZ and LIM domains, heart/skeletal muscle-specific protein, associates with cytoskeletal proteins through the PDZ domain. Biochem Biophys Res Commun 272:505–512

    Article  PubMed  CAS  Google Scholar 

  42. Li Z, Colucci-Guyon E, Pincon-Raymond M, Mericskay M, Pournin S, Paulin D, Babinet C (1996) Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev Biol 175:362–366

    Article  PubMed  CAS  Google Scholar 

  43. Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134:1255–1270

    Article  PubMed  CAS  Google Scholar 

  44. Capetanaki Y (2002) Desmin cytoskeleton: a potential regulator of muscle mitochondrial behavior and function. Trends Cardiovasc Med 12:339–348

    Article  PubMed  CAS  Google Scholar 

  45. Freund C, Schmidt-Ullrich R, Baurand A, Dunger S, Schneider W, Loser P, El Jamali A, Dietz R, Scheidereit C, Bergmann MW (2005) Requirement of nuclear factor-kappaB in angiotensin II- and isoproterenol-induced cardiac hypertrophy in vivo. Circulation 111:2319–2325

    Article  PubMed  CAS  Google Scholar 

  46. Puchelle E, Zahm JM, Tournier JM, Coraux C (2006) Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease. Proc Am Thorac Soc 3:726–733

    Article  PubMed  CAS  Google Scholar 

  47. Okamoto R, Watanabe M (2005) Cellular and molecular mechanisms of the epithelial repair in IBD. Dig Dis Sci 50(Suppl 1):S34–S38

    Article  PubMed  Google Scholar 

  48. Kuru S, Yasuma F, Wakayama T, Kimura S, Konagaya M, Aoki M, Tanabe M, Takahashi T (2004) A patient with limb girdle muscular dystrophy type 2B (LGMD2B) manifesting cardiomyopathy. Rinsho Shinkeigaku 44:375–378

    PubMed  Google Scholar 

Download references

Acknowledgment

We thank Mathilde Schmidt, May-Britt Köhler, Astrid Schiche, and Jutta Meisel for excellent technical assistance. We thank Friedrich C. Luft, M.D., for critical discussion of the manuscript. The work was supported by the German Research Foundation (DFG; KFO 192/1, Simone Spuler) and research grants of the Humboldt University to Simone Spuler, Karl Josef Osterziel, and Cemil Özcelik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Spuler.

Additional information

Simone Spuler and Cemil Özcelik contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material

Supplementary table 1

29 kb

E-Table 1

340 kb

Supplementary Fig. 1e

(GIF 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenzel, K., Geier, C., Qadri, F. et al. Dysfunction of dysferlin-deficient hearts. J Mol Med 85, 1203–1214 (2007). https://doi.org/10.1007/s00109-007-0253-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0253-7

Keywords

Navigation