Skip to main content
Log in

ASK1 and MAP2K6 as modifiers of age at onset in Huntington’s disease

  • Rapid Communication
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is an autosomal dominantly inherited neurodegenerative disease associated with abnormal expansions of a stretch of perfect CAG repeats in the HD gene. The number of repeat units is predictive for the age at onset (AO) of neurological symptoms. Part of the remaining variation in AO is attributed to modifier genes. In this study, genes involved in apoptosis were investigated as candidates for modulating AO in HD. A panel of 304 candidate genes was screened for allelic associations with motor AO via linked micro-satellite markers by pooling the DNAs of HD individuals from opposite ends of the AO distribution. After genotyping promising markers from the pooling experiment individually, markers revealed consolidated evidence for association in a candidate region comprising the genes MAP3K5 (ASK1)/PEX7 at 6q23.3 and in the gene MAP2K6 at 17q24.3. Fine-mapping of these candidate regions in a cohort of 250 Caucasian HD patients using single nucleotide polymorphism (SNP) markers delimitated the precise locations of association. Certain variations in an ASK1PEX7 haplotype block explain 2.6% of additional variance in AO in our HD cohort. In males, 4.9% additional variance could be attributed to MAP2K6 genotype variations. Altogether, ASK1PEX7 haplotypes and MAP2K2 genotype variations explain 6.3% additional variance in AO for HD. We hypothesise that sequence variations of ASK1 and MAP2K6 lead to partially sex-specific changes in the levels and/or phosphorylation states of p38 and p38-regulated proteins that might contribute to the observed delaying effects in the AO of HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  2. Wieczorek S, Epplen JT (2006) Huntington’s disease. In: Ganten D, Ruckpaul K (eds) Encyclopedic reference of genomics and proteomics in molecular medicine. Springer, Berlin

    Google Scholar 

  3. Myers RH, Vonsattel JP, Paskevich PA, Kiely DK, Stevens TJ, Cupples LA, Richardson EP, Bird ED (1991) Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus. J Neuropathol Exp Neurol 50:729–742

    Article  PubMed  CAS  Google Scholar 

  4. Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, MacDonald ME, Gusella JF, Harper PS, Shaw DJ (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 4:393–397

    Article  PubMed  CAS  Google Scholar 

  5. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403

    Article  PubMed  CAS  Google Scholar 

  6. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M et al (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 4:387–392

    Article  PubMed  CAS  Google Scholar 

  7. Kehoe P, Krawczak M, Harper PS, Owen MJ, Jones AL (1999) Age of onset in Huntington disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. J Med Genet 36:108–111

    PubMed  CAS  Google Scholar 

  8. The U.S.–Venezuela Collaborative Research Project, Wexler NS (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci U S A 101:3498–3503

    Article  CAS  Google Scholar 

  9. Andresen JM, Gayan J, Cherny SS, Brocklebank D, Alkorta-Aranburu G, Addis EA, Cardon LR, Housman DE, Wexler NS (2007) Replication of twelve association studies for Huntington’s disease residual age of onset in large Venezuelan kindreds. J Med Genet 44:44–50

    Article  PubMed  CAS  Google Scholar 

  10. Arning L, Kraus PH, Valentin S, Saft C, Epplen JT (2005) NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics 6:25–28

    Article  PubMed  CAS  Google Scholar 

  11. Arning L, Saft C, Wieczorek, S, Andrich, J, Kraus PH, Epplen JT (2007) NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Hum Genet 122:175–182

    Article  PubMed  CAS  Google Scholar 

  12. Li JL, Hayden MR, Almqvist EW, Brinkman RR, Durr A, Dode C, Morrison PJ, Suchowersky O, Ross CA, Margolis RL, Rosenblatt A, Gomez-Tortosa E, Cabrero DM, Novelletto A, Frontali M, Nance M, Trent RJ, McCusker E, Jones R, Paulsen JS, Harrison M, Zanko A, Abramson RK, Russ AL, Knowlton B, Djousse L, Mysore JS, Tariot S, Gusella MF, Wheeler VC, Atwood LD, Cupples LA, Saint-Hilaire M, Cha JH, Hersch SM, Koroshetz WJ, Gusella JF, MacDonald ME, Myers RH (2003) A genome scan for modifiers of age at onset in Huntington disease: The HD MAPS study. Am J Hum Genet 73:682–687

    Article  PubMed  CAS  Google Scholar 

  13. Li JL, Hayden MR, Warby SC, Durr A, Morrison PJ, Nance M, Ross CA, Margolis RL, Rosenblatt A, Squitieri F, Frati L, Gomez-Tortosa E, Garcia CA, Suchowersky O, Klimek ML, Trent RJ, McCusker E, Novelletto A, Frontali M, Paulsen JS, Jones R, Ashizawa T, Lazzarini A, Wheeler VC, Prakash R, Xu G, Djousse L, Mysore JS, Gillis T, Hakky M, Cupples LA, Saint-Hilaire MH, Cha JH, Hersch SM, Penney JB, Harrison MB, Perlman SL, Zanko A, Abramson RK, Lechich AJ, Duckett A, Marder K, Conneally PM, Gusella JF, MacDonald ME, Myers RH (2006) Genome-wide significance for a modifier of age at neurological onset in Huntington’s disease at 6q23–24: the HD MAPS study. BMC Med Genet 7:71

    Article  PubMed  CAS  Google Scholar 

  14. Hickey MA, Chesselet MF (2003) Apoptosis in Huntington’s disease. Prog Neuro-psychopharmacol Biol Psychiatry 2:255–265

    Article  CAS  Google Scholar 

  15. Kim YJ, Yi Y, Sapp E, Wang Y, Cuiffo B, Kegel KB, Qin ZH, Aronin N, DiFiglia M (2001) Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington’s dise brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci U S A 22:12784–12789

    Article  Google Scholar 

  16. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  PubMed  CAS  Google Scholar 

  17. Jagiello P, Gencik M, Arning L, Wieczorek S, Kunstmann E, Csernok E, Gross WL, Epplen JT (2004) New genomic region for Wegener’s granulomatosis as revealed by an extended association screen with 202 apoptosis-related genes. Hum Genet 114:468–477

    Article  PubMed  CAS  Google Scholar 

  18. Wieczorek S, Jagiello P, Arning L, Dahmen N, Epplen JT (2004) Screening for candidate gene regions in narcolepsy using a microsatellite based approach and pooled DNA. J Mol Med 82:696–705

    Article  PubMed  CAS  Google Scholar 

  19. Braverman N, Chen L, Lin P, Obie C, Steel G, Douglas P, Chakraborty PK, Clarke JT, Boneh A, Moser A, Moser H, Valle D (2002) Mutation analysis of PEX7 in 60 probands with rhizomelic chondrodysplasia punctata and functional correlations of genotype with phenotype. Human Mutat 20:284–297

    Article  CAS  Google Scholar 

  20. Weston CR, Lambright DG, Davis RJ (2002) Signal transduction. MAP kinase signaling specificity. Science 296:2345–2347

    Article  PubMed  CAS  Google Scholar 

  21. Nagai H, Noguchi T, Takeda K, Ichijo H (2007) Pathophysiological roles of ASK1-MAP kinase signaling pathways. J Biochem Mol Biol 40:1–6

    PubMed  CAS  Google Scholar 

  22. Liu YF (1998) Expression of polyglutamine-expanded Huntingtin activates the SEK1-JNK pathway and induces apoptosis in a hippocampal neuronal cell line. J Biol Chem 273:28873–28877

    Article  PubMed  CAS  Google Scholar 

  23. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    Article  PubMed  CAS  Google Scholar 

  24. Werner T (2000) Computer-assisted analysis of transcription control regions. Matinspector and other programs. Methods Mol Biol 132:337–349

    PubMed  CAS  Google Scholar 

  25. Kherrouche Z, Blais A, Ferreira E, De Launoit Y, Monté D (2006) ASK-1 (apoptosis signal-regulating kinase 1) is a direct E2F target gene. Biochem J 396:547–556

    Article  PubMed  CAS  Google Scholar 

  26. Angele MK, Nitsch S, Knoferl MW, Ayala A, Angele P, Schildberg FW, Jauch KW, Chaudry IH (2003) Sex-specific p38 MAP kinase activation following trauma-hemorrhage: involvement of testosterone and estradiol. Am J Physiol Endocrinol Metab 285:189–196

    Google Scholar 

  27. Imahara SD, Jelacic S, Junker CE, O, Keefe GE (2005) The influence of gender on human innate immunity. Surgery 138:275–282

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Maren Mai for the technical help. This work was supported by FoRUM grant 821984.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa Arning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary ESM 1 (DOC 505 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arning, L., Monté, D., Hansen, W. et al. ASK1 and MAP2K6 as modifiers of age at onset in Huntington’s disease. J Mol Med 86, 485–490 (2008). https://doi.org/10.1007/s00109-007-0299-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0299-6

Keywords

Navigation