Skip to main content
Log in

Mind the bend: cerebral activations associated with mental imagery of walking along a curved path

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The use of functional magnetic resonance imaging (fMRI) to examine mental imagery of locomotion has become an attractive way to investigate supraspinal gait control in humans. Whereas cerebral activation patterns associated with walking along a straight line have already been investigated, data on activations associated with the initiation of turns and the maintenance of a curved path are sparse. Electrophysiological findings in animals show that electrical stimulation of the striatum induces a contraversive turn of eyes, head, and body. In the present study, fMRI was used to investigate brain activity in 12 healthy volunteers during mental imagery of walking along a curved path, walking straight ahead, and upright stance. The major findings were as follows: (1) A shift of activation to the hemisphere contralateral to the turn was found in the putamen, and—for initiation of the turn—in the caudate nucleus. These findings confirm the important role of the striatum in the initiation of movement and the execution of contraversive body turns. (2) Parahippocampal and fusiform gyri, known to be involved in visually guided navigation, showed more activity when walking along a curved path than when walking straight ahead. (3) Deactivations were found in the superior and medial temporal gyri, areas belonging to the multisensory and vestibular cortical network. This reduced activity may reflect the suppression of vestibular signal processing in favour of—potentially conflicting—visual input. (4) Mental imagery of walking along a curved path induced ipsiversive eye movements in most subjects, as did actually walking along a curve. These data complement earlier findings on the role of anticipatory eye movements during initiation of turns and suggest that there is a very close neurophysiologic relation between locomotion and its mental imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike N, Ohno T, Tsubokawa H (1989) EMG activities of neck muscles underlying lateral flexion of the neck during head-turning induced by electrical stimulation of the caudate nucleus in cats. Neurosci Res 6:397–410

    Article  PubMed  CAS  Google Scholar 

  • Bakker M, De Lange FP, Helmich RC, Scheeringa R, Bloem BR, Toni I (2008) Cerebral correlates of motor imagery of normal and precision gait. Neuroimage 41:998–1010

    Article  PubMed  CAS  Google Scholar 

  • Bense S, Bartenstein P, Lochmann M, Schlindwein P, Brandt T, Dieterich M (2004) Metabolic changes in vestibular and visual cortices in acute vestibular neuritis. Ann Neurol 56:624–630

    Article  PubMed  Google Scholar 

  • Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, Sweeney JA (1999) Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study. Hum Brain Mapp 8:209–225

    Article  PubMed  CAS  Google Scholar 

  • Binkofski F, Amunts K, Stephan KM, Posse S, Schormann T, Freund HJ, Zilles K, Seitz RJ (2000) Broca’s region subserves imagery of motion: a combined cytoarchitectonic and fMRI study. Hum Brain Mapp 11:273–285

    Article  PubMed  CAS  Google Scholar 

  • Brandt T, Strupp M, Benson J (1999) You are better off running than walking with acute vestibulopathy. Lancet 354:746

    Article  PubMed  CAS  Google Scholar 

  • Courtine G, Schieppati M (2003) Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision. Eur J Neurosci 18:177–190

    Article  PubMed  Google Scholar 

  • Cutting JE, Readinger WO, Wang RF (2002) Walking, looking to the side, and taking curved paths. Percept Psychophys 64:415–425

    PubMed  Google Scholar 

  • Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, Mazziotta JC, Fazio F (1994) Mapping motor representations with positron emission tomography. Nature 371:600–602

    Article  PubMed  CAS  Google Scholar 

  • Deutschlander A, Marx E, Stephan T, Riedel E, Wiesmann M, Dieterich M, Brandt T (2005) Asymmetric modulation of human visual cortex activity during 10 degrees lateral gaze (fMRI study). Neuroimage 28:4–13

    Article  PubMed  CAS  Google Scholar 

  • Dietz V (2003) Spinal cord pattern generators for locomotion. Clin Neurophysiol 114:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 860:360–376

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425:184–188

    Article  PubMed  CAS  Google Scholar 

  • Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601

    Article  PubMed  CAS  Google Scholar 

  • Freund HJ (1990) Premotor area and preparation of movement. Rev Neurol (Paris) 146:543–547

    CAS  Google Scholar 

  • Frison L, Pocock SJ (1992) Repeated measures in clinical trials: analysis using mean summary statistics and its implications for design. Stat Med 11:1685–1704

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Frith CD, Turner R, Frackowiak RS (1995a) Characterizing evoked hemodynamics with fMRI. Neuroimage 2:157–165

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R (1995b) Analysis of fMRI time-series revisited. Neuroimage 2:45–53

    Article  PubMed  CAS  Google Scholar 

  • Frith CD, Friston K, Liddle PF, Frackowiak RS (1991) Willed action and the prefrontal cortex in man: a study with PET. Proc Biol Sci 244:241–246

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, Ogawa M, Kimura J, Shibasaki H (1997) Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 228:183–186

    Article  PubMed  CAS  Google Scholar 

  • Gardiner TW, Nelson RJ (1992) Striatal neuronal activity during the initiation and execution of hand movements made in response to visual and vibratory cues. Exp Brain Res 92:15–26

    Article  PubMed  CAS  Google Scholar 

  • Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878

    Article  PubMed  Google Scholar 

  • Glasauer S, Schneider E, Jahn K, Strupp M, Brandt T (2005) How the eyes move the body. Neurology 65:1291–1293

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb J (2007) From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron 53:9–16

    Article  PubMed  CAS  Google Scholar 

  • Grasso R, Prevost P, Ivanenko YP, Berthoz A (1998) Eye–head coordination for the steering of locomotion in humans: an anticipatory synergy. Neurosci Lett 253:115–118

    Article  PubMed  CAS  Google Scholar 

  • Hauber W (1998) Involvement of basal ganglia transmitter systems in movement initiation. Prog Neurobiol 56:507–540

    Article  PubMed  CAS  Google Scholar 

  • Hicheur H, Vieilledent S, Berthoz A (2005) Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms. Neurosci Lett 383:87–92

    Article  PubMed  CAS  Google Scholar 

  • Hollands MA, Patla AE, Vickers JN (2002) “Look where you’re going!”: gaze behaviour associated with maintaining and changing the direction of locomotion. Exp Brain Res 143:221–230

    Article  PubMed  CAS  Google Scholar 

  • Imai T, Moore ST, Raphan T, Cohen B (2001) Interaction of the body, head, and eyes during walking and turning. Exp Brain Res 136:1–18

    Article  PubMed  CAS  Google Scholar 

  • Jacobs JV, Horak FB (2007) Cortical control of postural responses. J Neural Transm 114:1339–1348

    Article  PubMed  CAS  Google Scholar 

  • Jahn K, Deutschlander A, Stephan T, Kalla R, Wiesmann M, Strupp M, Brandt T (2008) Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage 39:786–792

    Article  PubMed  Google Scholar 

  • Jahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M, Brandt T (2004) Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 22:1722–1731

    Article  PubMed  Google Scholar 

  • Jahn K, Kalla R, Karg S, Strupp M, Brandt T (2006) Eccentric eye and head positions in darkness induce deviation from the intended path. Exp Brain Res 174:152–157

    Article  PubMed  Google Scholar 

  • Jeannerod M, Decety J (1995) Mental motor imagery: a window into the representational stages of action. Curr Opin Neurobiol 5:727–732

    Article  PubMed  CAS  Google Scholar 

  • Jiang T, He Y, Zang Y, Weng X (2004) Modulation of functional connectivity during the resting state and the motor task. Hum Brain Mapp 22:63–71

    Article  PubMed  Google Scholar 

  • Malouin F, Richards CL, Jackson PL, Dumas F, Doyon J (2003) Brain activations during motor imagery of locomotor-related tasks: a PET study. Hum Brain Mapp 19:47–62

    Article  PubMed  Google Scholar 

  • Mellet E, Petit L, Mazoyer B, Denis M, Tzourio N (1998) Reopening the mental imagery debate: lessons from functional anatomy. Neuroimage 8:129–139

    Article  PubMed  CAS  Google Scholar 

  • Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14:1186–1192

    Article  PubMed  CAS  Google Scholar 

  • Peterson SL (1986) Electroconvulsive shock and l-dopa reduce head-turning induced by electrical stimulation of the caudate nucleus in the rat. Exp Neurol 91:463–470

    Article  PubMed  CAS  Google Scholar 

  • Reiss M, Reiss G (1997) Lateral preferences in a German population. Percept Mot Skills 85:569–574

    Article  PubMed  CAS  Google Scholar 

  • Ruby P, Decety J (2001) Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nat Neurosci 4:546–550

    PubMed  CAS  Google Scholar 

  • Sacco K, Cauda F, Cerliani L, Mate D, Duca S, Geminiani GC (2006) Motor imagery of walking following training in locomotor attention. The effect of “the tango lesson”. Neuroimage 32:1441–1449

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2008) MRI atlas of the human cerebellum. Academic Press, San Diego

    Google Scholar 

  • Schultz W, Romo R (1988) Neuronal activity in the monkey striatum during the initiation of movements. Exp Brain Res 71:431–436

    Article  PubMed  CAS  Google Scholar 

  • Shima K, Mushiake H, Saito N, Tanji J (1996) Role for cells in the presupplementary motor area in updating motor plans. Proc Natl Acad Sci USA 93:8694–8698

    Article  PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (2008) Co-planar stereotactic atlas of the human brain. Thieme Stuttgart, New York

    Google Scholar 

  • Tanji J, Shima K, Mushiake H (1996) Multiple cortical motor areas and temporal sequencing of movements. Brain Res Cogn Brain Res 5:117–122

    Article  PubMed  CAS  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  PubMed  CAS  Google Scholar 

  • Woods RP (1996) Modeling for intergroup comparisons of imaging data. Neuroimage 4:S84–S94

    Article  PubMed  CAS  Google Scholar 

  • Yeomans JS, Buckenham KE (1992) Electrically evoked turning: asymmetric and symmetric collision between anteromedial cortex and striatum. Brain Res 570:279–292

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, J., Stephan, T., Kalla, R. et al. Mind the bend: cerebral activations associated with mental imagery of walking along a curved path. Exp Brain Res 191, 247–255 (2008). https://doi.org/10.1007/s00221-008-1520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1520-8

Keywords

Navigation