Skip to main content

Advertisement

Log in

Diffusion-weighted MR imaging in leukodystrophies

European Radiology Aims and scope Submit manuscript

Abstract

Leukodystrophies are genetically determined metabolic diseases, in which the underlying biochemical abnormality interferes with the normal build-up and/or maintenance of myelin, which leads to hypo- (or arrested) myelination, or dysmyelination with resultant demyelination. Although conventional magnetic resonance imaging has significantly contributed to recent progress in the diagnostic work-up of these diseases, diffusion-weighted imaging has the potential to further improve our understanding of underlying pathological processes and their dynamics through the assessment of normal and abnormal diffusion properties of cerebral white matter. Evaluation of conventional diffusion-weighted and ADC map images allows the detection of major diffusion abnormalities and the identification of various edema types, of which the so-called myelin edema is particularly relevant to leukodystrophies. Depending on the nature of histopathological changes, stage and progression gradient of diseases, various diffusion-weighted imaging patterns may be seen in leukodystrophies. Absent or low-grade myelin edema is found in mucopolysaccharidoses, GM gangliosidoses, Zellweger disease, adrenomyeloneuropathy, L-2-hydroxyglutaric aciduria, non-ketotic hyperglycinemia, classical phenylketonuria, Van der Knaap disease and the vanishing white matter, medium grade myelin edema in metachromatic leukodystrophy, X-linked adrenoleukodystrophy and HMG coenzyme lyase deficiency and high grade edema in Krabbe disease, Canavan disease, hyperhomocystinemias, maple syrup urine disease and leukodystrophy with brainstem and spinal cord involvement and high lactate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Aicardi J (1993) The inherited leukodystrophies: a clinical overview. J Inherit Metab Dis 16:733–743

    Google Scholar 

  2. Hoon AH, Reinhardt EM, Kelley RI, Breiter SN, Morton H, Naidu S, Johnston MV (1997) Brain magnetic resonance imaging in suspected extrapyramidal cerebral palsy: observations in distinguishing genetic-metabolic from acquired causes. J Pediatr 131:240–245

    Google Scholar 

  3. Gascon GG, Ozand PT, Brismar J (1994) Movement disorders in childhood organic acidurias. Clinical, neuroimaging, and biochemical correlations. Brain Dev 16(Suppl):94–103

    Google Scholar 

  4. Kendall BE (1993) Inborn errors and demyelination: MRI and the diagnosis of white matter disease. J Inherit Metab Dis 16:771–786

    Google Scholar 

  5. Kolodny EH (1993) Dysmyelinating and demyelinating conditions in infancy. Curr Opin Neurol Neurosurg 6:379–386

    Google Scholar 

  6. Matthieu JM (1993) An introduction to the molecular basis of inherited myelin diseases. J Inherit Metab Dis 16:724–732

    Google Scholar 

  7. Huisman TA (2003) Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma. Eur Radiol 13:2283–2297

    Google Scholar 

  8. Prayer D, Barkovich AJ, Kirschner DA, Prayer LM, Roberts TPL, Kucharczyk J, Moseley ME (2001) Visualization of nonstructural changes in early white matter development on diffusion-weighted MR images: evidence supporting premyelination anisotropy. Am J Neuroradiol 22:1572–1576

    Google Scholar 

  9. Morriss MC, Zimmerman RA, Bilaniuk LT, Hunter JV, Haselgrove JC (1999) Changes in brain water diffusion during childhood. Neuroradiology 41:929–934

    Google Scholar 

  10. Engelbrecht V, Scherer A, Rassek M, Witsack HJ, Modder U (2002) Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 222:410–418

    Google Scholar 

  11. Beck M (2001) Variable clinical presentation in lysosomal storage disorders. J Inherit Metab Dis 24(Suppl-51)

  12. Faerber EN, Melvin J, Smergel EM (1999) MRI appearances of metachromatic leukodystrophy. Pediatr Radiol 29:669–672

    Google Scholar 

  13. Kim TS, Kim IO, Kim WS, Choi YS, Lee JY, Kim OW, Yeon KM, Kim KJ, Hwang YS (1997) MR of childhood metachromatic leukodystrophy. Am J Neuroradiol 18:733–738

    Google Scholar 

  14. Sener RN (2003) Metachromatic leukodystrophy. Diffusion MR imaging and proton MR spectroscopy. Acta Radiologica 44:440–443

    Google Scholar 

  15. Tada K, Taniike M, Ono J, Tsukamoto H, Inui K, Okada S (1992) Serial magnetic resonance imaging studies in a case of late onset globoid cell leukodystrophy. Neuropediatrics 23:306–309

    Google Scholar 

  16. Loes DJ, Peters C, Krivit W (1999) Globoid cell leukodystrophy: distinguishing early-onset from late-onset disease using a brain MR imaging scoring method. Am J Neuroradiol 20:316–323

    Google Scholar 

  17. Turazzini M, Beltramello A, Bassi R, Del Colle R, Silvestri M (1997) Adult onset Krabbe’s leukodystrophy: a report of two cases. Acta Neurol Scand 96:413–415

    Google Scholar 

  18. Guo AC, Petrella JR, Kurtzberg J, Provenzale JM (2001) Evaluation of white matter anisotropy in Krabbe disease with diffusion tensor MR imaging: initial experience. Radiology 218:809–815

    Google Scholar 

  19. Barone R, Nigro F, Triulzi F, Musumeci S, Fiumara A, Pavone L (1999) Clinical and neuroradiological follow-up in mucopolysaccharidosis type III (Sanfilippo syndrome). Neuropediatrics 30:283–288

    Google Scholar 

  20. Yuksel A, Yalcinkaya C, Islak C, Gunduz E, Seven M (1999) Neuroimaging findings of four patients with Sandhoff disease. Pediatr Neurol 21:562–565

    Google Scholar 

  21. Fournier B, Smeitnink JAM, Dorland L, Berger R, Saudubray JM, Poll-The BT (1994) Peroxisomal disorders: a review. J Inherit Metab Dis 17:470–486

    Google Scholar 

  22. Gartner J (2000) Organelle disease: peroxisomal disorders. Eur J Pediatr 159:(Suppl-9)

  23. Poggi-Travert F, Fournier B, Poll-The BT, Saudubray JM (1995) Clinical approach to inherited peroxisomal disorders. J Inherit Metab Dis 18:(Suppl-18)

  24. Martin JJ (1995) Neuropathology of peroxisomal diseases. J Inherit Metab Dis 18(Suppl 1):19–33

    Google Scholar 

  25. Barkovich AJ, Peck WW (1997) MR of Zellweger syndrome. Am J Neuroradiol 18:1163–1170

    Google Scholar 

  26. ter Rahe BS, Majoie CB, Akkerman EM, den Heeten GJ, Poll-The BT, Barth PG (2004) Peroxisomal biogenesis disorder: comparison of conventional MR imaging with diffusion-weighted and diffusion-tensor imaging findings. Am J Neuroradiol 25:1022–1027

    Google Scholar 

  27. Barkovich AJ, Ferriero DM, Bass N, Boyer R (1997) Involvement of the pontomedullary corticospinal tracts: a useful finding in the diagnosis of X-linked adrenoleukodystrophy. Am J Neuroradiol 18:95–100

    Google Scholar 

  28. van der Knaap MS, Valk J (1991) The MR spectrum of peroxisomal disorders. Neuroradiology 33:30–37

    Google Scholar 

  29. Schneider JFL, Il’yasov KA, Boltshauser E, Hennig J, Martin E (2003) Diffusion tensor imaging in cases of adrenoleukodystrophy: preliminary experience as a marker for early demyelination. Am J Neuroradiol 24:819–824

    Google Scholar 

  30. Eichler FS, Itoh R, Barker PB, Mori S, Garrett ES, van Zijl PC, Moser HW, Raymond GV, Melhem ER (2002) Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy: initial experience. Radiology 225:245–252

    Google Scholar 

  31. van Geel BM, Bezman L, Loes DJ, Moser HW, Raymond GV (2001) Evolution of phenotypes in adult male patients with X-linked adrenoleukodystrophy. Ann Neurol 49:186–194

    Google Scholar 

  32. van Geel BM, Assies J, Weverling GJ, Barth PG (1994) Predominance of the adrenomyeloneuropathy phenotype of X-linked adrenoleukodystrophy in The Netherlands: a survey of 30 kindreds. Neurology 44:2343–2346

    Google Scholar 

  33. Yalcinkaya C, Dincer A, Gündüz E, Ficicioglu C, Kocer N, Aydin A (1999) MRI and MRS in HMG-CoA lyase deficiency. Pediatr Neurol 20:375–380

    Google Scholar 

  34. van der Knaap MS, Bakker HD, Valk J (1998) MR imaging and proton spectroscopy in 3-hydroxy-3-methylglutaryl coenzyme A lyase deficiency. Am J Neuroradiol 19:378–382

    Google Scholar 

  35. D’Incerti L, Farina L, Moroni I, Uziel G, Savoiardo M (1998) L-2-Hydroxyglutaric aciduria: MRI in seven cases. Neuroradiology 40:727–733

    Google Scholar 

  36. Aydin K, Ozmen M, Tatli B, Sencer S (2003) Single-voxel MR spectroscopy and diffusion-weighted MRI in two patients with l-2-hydroxyglutaric aciduria. Pediatr Radiol 33:872–876

    Google Scholar 

  37. Sener RN (2003) L-2 hydroxyglutaric aciduria: proton magnetic resonance spectroscopy and diffusion magnetic resonance imaging findings. J Comput Assist Tomogr 27:38–43

    Google Scholar 

  38. Baslow MH (1999) Molecular water pumps and the aetiology of Canavan disease: a case of the sorcerer’s apprentice. J Inherit Metab Dis 22:99–101

    Google Scholar 

  39. Brismar J, Brismar G, Gascon G, Ozand P (1990) Canavan disease: CT and MR imaging of the brain. Am J Neuroradiol 11:805–810

    Google Scholar 

  40. Sener RN (2003) Canavan disease: diffusion magnetic resonance imaging findings. J Comput Assist Tomogr 27:30–33

    Google Scholar 

  41. Riviello JJ Jr, Rezvani I, Di George AM, Foley CM (1991) Cerebral edema causing death in children with maple syrup urine disease. J Pediatr 119:42–45

    Google Scholar 

  42. Sie LT, van der Knaap MS, Wezel-Meijler G, Valk J (1997) MRI assessment of myelination of motor and sensory pathways in the brain of preterm and term-born infants. Neuropediatrics 28:97–105

    Google Scholar 

  43. Brismar J, Aqeel A, Brismar G, Coates R, Gascon G, Ozand PT (1990) Maple syrup urine disease: findings on CT and MR scans of the brain in 10 infants. Am J Neuroradiol 11:121–128

    Google Scholar 

  44. Parmar H, Sitoh YY, Ho L (2004) Maple syrup urine disease: diffusion-weighted and diffusion-tensor magnetic resonance imaging findings. J Comput Assist Tomogr 28:93–97

    Google Scholar 

  45. Cavalleri F, Berardi A, Burlina AB, Ferrari F, Mavilla L (2002) Diffusion-weighted MRI of maple syrup urine disease encephalopathy. Neuroradiology 44:499–502

    Google Scholar 

  46. Jan W, Zimmerman RA, Wang ZJ, Berry GT, Kaplan PB, Kaye EM (2003) MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology 45:393–399

    Google Scholar 

  47. Righini A, Ramenghi LA, Parini R, Triulzi F, Mosca F (2003) Water apparent diffusion coefficient and T2 changes in the acute stage of maple syrup urine disease: evidence of intramyelinic and vasogenic-interstitial edema. J Neuroimaging 13:162–165

    Google Scholar 

  48. Ha JS, Kim TK, Eun BL, Lee HS, Lee KY, Seol HY, Cha SH (2004) Maple syrup urine disease encephalopathy: a follow-up study in the acute stage using diffusion-weighted MRI. Pediatr Radiol 34:163–166

    Google Scholar 

  49. Press GA, Barshop BA, Haas RH, Nyhan WL, Glass RF, Hesselink JR (1989) Abnormalities of the brain in nonketotic hyperglycinemia: MR manifestations. Am J Neuroradiol 10:315–321

    Google Scholar 

  50. Sener RN (2003) Nonketotic hyperglycinemia: diffusion magnetic resonance imaging findigns. J Comput Assist Tomogr 27:538–540

    Google Scholar 

  51. Fowler B (1997) Disorders of homocysteine metabolism. J Inherit Metab Dis 20:270–285

    Google Scholar 

  52. Surtees R (1993) Biochemical pathogenesis of subacute combined degeneration of the spinal cord and brain. J Inherit Metab Dis 16:762–770

    Google Scholar 

  53. Hyland K, Smith I, Bottiglieri T, Perry J, Wendel U, Clayton PT, Leonard JV (1988) Demyelination and decreased S-adenosylmethionine in 5,10-methylenetetrahydrofolate reductase deficiency. Neurology 38:459–462

    Google Scholar 

  54. Surtees R, Leonard J, Austin S (1991) Association of demyelination with deficiency of cerebrospinal-fluid S-adenosylmethionine in inborn errors of methyl-transfer pathway. Lancet 338:1550–1554

    Google Scholar 

  55. Engelbrecht V, Rassek M, Huismann J, Wendel U (1997) MR and Proton MR spectroscopy of the brain in hyperhomocysteinemia caused by methylenetetrahydrofolate reductase deficiency. Am J Neuroradiol 18:536–539

    Google Scholar 

  56. Dyer CA (2000) Comments on the neuropathology of phenylketonuria. Eur J Pediatr 159(Suppl 2):107–108

    Google Scholar 

  57. Bick U, Ullrich K, Stöber U, Möller H, Schuierer G, Ludolph AC, Oberwittler C, Weglage J, Wendel U (1993) White matter abnormalities in patients with treated hyperphenylalaninaemia: magnetic resonance relaxometry and proton spectroscopy findings. Eur J Pediatr 152:1012–1020

    Google Scholar 

  58. Thompson AJ, Tillotson S, Smith I, Kendall B, Moore SG, Brenton DP (1993) Brain MRI changes in phenylketonuria. Associations with dietary status. Brain 116:811–821

    Google Scholar 

  59. Phillips MD, McGraw P, Lowe MJ, Mathews VP, Hainline BE (2001) Diffusion-weighted imaging of white matter abnormalities in patients with phenylketonuria. Am J Neuroradiol 22:1583–1586

    Google Scholar 

  60. Sener RN (2003) Diffusion MRI findings in phenylketonuria. Eur Radiol 13:226–229

    Google Scholar 

  61. Sener RN (2003) Phenylketonuria: diffusion magnetic resonance imaging and proton magnetic resonance spectroscopy. J Comput Assist Tomogr 27:541–543

    Google Scholar 

  62. de Koning TJ, Jaeken J, Pineda M, Van Maldergem L, Poll-The BT, van der Knaap MS (2000) Hypomyelination and reversible white matter attenuation in 3-phosphoglycerate dehydrogenase deficiency. Neuropediatrics 31:287–292

    Google Scholar 

  63. Munoz A, Mateos F, Simon R, Garcia-Silva MT, Cabello S, Arenas J (1999) Mitochondrial diseases in children: neuroradiological and clinical features in 17 patients. Neuroradiology 41:920–928

    Google Scholar 

  64. van der Knaap MS, Wevers RA, Struys EA, Verhoeven NM, Pouwels PJ, Engelke UF, Feikema W, Valk J, Jakobs C (1999) Leukoencephalopathy associated with a disturbance in the metabolism of polyols. Ann Neurol 46:925–928

    Google Scholar 

  65. Majoie CB, Akkerman EM, Blank C, Barth PG, Poll-The BT, den Heeten GJ (2002) Mitochondrial encephalomyopathy: comparison of conventional MR imaging with diffusion-weighted and diffusion tensor imaging: case report. Am J Neuroradiol 23:813–816

    Google Scholar 

  66. van der Knaap MS, Barth PG, Stroink H, van Nieuwenhuizen O, Arts WF, Hoogenraad F, Valk J (1995) Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol 37:324–334

    Google Scholar 

  67. Sener RN (2000) van der Knaap syndrome: MR imaging findings including FLAIR, diffusion imaging, and proton MR spectroscopy. Eur Radiol 10:1452–1455

    Google Scholar 

  68. Gelal F, Calli C, Apaydin M, Erdem G (2002) van der Knaap’s leukoencephalopathy: report of five new cases with emphasis on diffusion-weighted MRI findings. Neuroradiology 44:625–630

    Google Scholar 

  69. Brockmann K, Finsterbusch J, Terwey B, Frahm J, Hanefeld F (2003) Megalencephalic leukoencephalopathy with subcortical cysts in an adult: quantitative proton MR spectroscopy and diffusion tensor MRI. Neuroradiology 45:137–142

    Google Scholar 

  70. van der Knaap MS, Barth PG, Vrensen GF, Valk J (1996) Histopathology of an infantile-onset spongiform leukoencephalopathy with a discrepantly mild clinical course. Acta Neuropathologica 92:206–212

    Google Scholar 

  71. Hanefeld F, Holzbach U, Kruse B, Wilichowski E, Christen HJ, Frahm J (1993) Diffuse white matter disease in three children: an encephalopathy with unique features on magnetic resonance imaging and proton magnetic resonance spectroscopy. Neuropediatrics 24:244–248

    Google Scholar 

  72. van der Knaap MS, Barth PG, Gabreels FJ, Franzoni E, Begeer JH, Stroink H, Rotteveel JJ, Valk J (1997) A new leukoencephalopathy with vanishing white matter. Neurology 48:845–855

    Google Scholar 

  73. Francalanci P, Eymard-Pierre E, Dionisi-Vici C, Boldrini R, Piemonte F, Virgili R, Fariello G, Bosman C, Santorelli FM, Boespflug-Tanguy O, Bertini E (2001) Fatal infantile leukodystrophy: a severe variant of CACH/VWM syndrome, allelic to chromosome 3q27. Neurology 57:265–270

    Google Scholar 

  74. Senol U, Haspolat S, Karaali K, Luleci E (2000) MR imaging of vanishing white matter. Am J Roentgenol 175:826–828

    Google Scholar 

  75. van der Knaap MS, van der Voorn P, Barkhof F, van Coster R, Krageloh-Mann I, Feigenbaum A, Blaser S, Vles JS, Rieckmann P, Pouwels PJ (2003) A new leukoencephalopathy with brainstem and spinal cord involvement and high lactate. Ann Neurol 53:252–258

    Google Scholar 

  76. Ono J, Harada K, Mano T, Sakurai K, Okada S (1997) Differentiation of dys- and demyelination using diffusional anisotropy. Pediatr Neurol 16:63–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Patay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patay, Z. Diffusion-weighted MR imaging in leukodystrophies. Eur Radiol 15, 2284–2303 (2005). https://doi.org/10.1007/s00330-005-2846-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-2846-2

Keywords

Navigation