Skip to main content

Advertisement

Log in

Longitudinal change in CSF Tau and Aβ biomarkers for up to 48 months in ADNI

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The dynamics of cerebrospinal fluid (CSF) tau and Aβ biomarkers over time in Alzheimer’s disease (AD) patients from prodromal pre-symptomatic to severe stages of dementia have not been clearly defined and recent studies, most of which are cross-sectional, present conflicting findings. To clarify this issue, we analyzed the longitudinal CSF tau and Aβ biomarker data from 142 of the AD Neuroimaging Initiative (ADNI) study subjects [18 AD, 74 mild cognitive impairment (MCI), and 50 cognitively normal subjects (CN)]. Yearly follow-up CSF collections and studies were conducted for up to 48 months (median = 36 months) for CSF Aβ142, phosphorylated tau (p-tau181), and total tau (t-tau). An unsupervised analysis of longitudinal measurements revealed that for Aβ1–42 and p-tau181 biomarkers there was a group of subjects with stable longitudinal CSF biomarkers measures and a group of subjects who showed a decrease (Aβ1–42, mean = −9.2 pg/ml/year) or increase (p-tau181, mean = 5.1 pg/ml/year) of these biomarker values. Low baseline Aβ1–42 values were associated with longitudinal increases in p-tau181. Conversely, high baseline p-tau181 values were not associated with changes in Aβ1–42 levels. When the subjects with normal baseline biomarkers and stable concentrations during follow-up were excluded, the expected time to reach abnormal CSF levels and the mean AD values was significantly shortened. Thus, our data demonstrate for the first time that there are distinct populations of ADNI subjects with abnormal longitudinal changes in CSF p-tau181 and Aβ1–42 levels, and our longitudinal results favor the hypothesis that Aβ1–42 changes precede p-tau181 changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367(9):795–804. doi:10.1056/NEJMoa1202753

    Article  PubMed  CAS  Google Scholar 

  2. Bates DM, Chambers JM (1992) Nonlinear models. In: Hastie TJ, JM Chambers (eds) Statistical Models in S. Wadsworth & Brooks/Cole, Pacific Grove, California

  3. Beach TG, Monsell SE, Phillips LE, Kukull W (2012) Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. J Neuropathol Exp Neurol 71(4):266–273. doi:10.1097/NEN.0b013e31824b211b

    Article  PubMed  Google Scholar 

  4. Bouwman FH, van der Flier WM, Schoonenboom NS, van Elk EJ, Kok A, Rijmen F, Blankenstein MA, Scheltens P (2007) Longitudinal changes of CSF biomarkers in memory clinic patients. Neurology 69(10):1006–1011. doi:10.1212/01.wnl.0000271375.37131.04

    Article  PubMed  CAS  Google Scholar 

  5. Buchhave P, Minthon L, Zetterberg H, Wallin AK, Blennow K, Hansson O (2012) Cerebrospinal fluid levels of beta-amyloid 1–42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry 69(1):98–106. doi:10.1001/archgenpsychiatry.2011.155

    Article  PubMed  CAS  Google Scholar 

  6. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923

    Article  PubMed  CAS  Google Scholar 

  7. De Meyer G, Shapiro F, Vanderstichele H, Vanmechelen E, Engelborghs S, De Deyn PP, Coart E, Hansson O, Minthon L, Zetterberg H, Blennow K, Shaw L, Trojanowski JQ (2010) Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Arch Neurol 67(8):949–956. doi:10.1001/archneurol.2010.179

    Article  PubMed  Google Scholar 

  8. Duyckaerts C (2011) Tau pathology in children and young adults: can you still be unconditionally baptist? Acta Neuropathol 121(2):145–147. doi:10.1007/s00401-010-0794-7

    Article  PubMed  Google Scholar 

  9. Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gomez MG, Langois CM, Langbaum JB, Ayutyanont N, Roontiva A, Thiyyagura P, Lee W, Mo H, Lopez L, Moreno S, Acosta-Baena N, Giraldo M, Garcia G, Reiman RA, Huentelman MJ, Kosik KS, Tariot PN, Lopera F, Reiman EM (2012) Florbetapir PET analysis of amyloid-beta deposition in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: a cross-sectional study. Lancet Neurol 11(12):1057–1065. doi:10.1016/S1474-4422(12)70227-2

    Article  PubMed  CAS  Google Scholar 

  10. Gruen B, Leisch F (2007) Fitting finite mixtures of generalized linear regressions in R. Comput Stat Data Anal 51(11):5247–5252. doi:10.1016/j.csda.2006.08.014

    Article  Google Scholar 

  11. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, New York

    Book  Google Scholar 

  12. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, Lesnick TG, Pankratz VS, Donohue MC, Trojanowski JQ (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12(2):207–216. doi:10.1016/S1474-4422(12)70291-0

    Article  PubMed  CAS  Google Scholar 

  13. Jack CR Jr, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, Shiung MM, Gunter JL, Boeve BF, Kemp BJ, Weiner M, Petersen RC (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 132(Pt 5):1355–1365. doi:10.1093/brain/awp062

    Article  PubMed  Google Scholar 

  14. Jack CR Jr, Wiste HJ, Lesnick TG, Weigand SD, Knopman DS, Vemuri P, Pankratz VS, Senjem ML, Gunter JL, Mielke MM, Lowe VJ, Boeve BF, Petersen RC (2013) Brain beta-amyloid load approaches a plateau. Neurology 80(10):890–896. doi:10.1212/WNL.0b013e3182840bbe

    Article  PubMed  CAS  Google Scholar 

  15. Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38(4):963–974

    Article  PubMed  CAS  Google Scholar 

  16. Landau SM, Lu M, Joshi AD, Pontecorvo M, Mintun MA, Trojanowski JQ, Shaw LM, Jagust WJ, Alzheimer’s Disease Neuroimaging Initiative (2013) Comparing PET imaging and CSF measurements of Aß. Ann Neurol. doi:10.1002/ana.23908

  17. Le Bastard N, Aerts L, Sleegers K, Martin JJ, Van Broeckhoven C, De Deyn PP, Engelborghs S (2013) Longitudinal stability of cerebrospinal fluid biomarker levels: fulfilled requirement for pharmacodynamic markers in Alzheimer’s disease. J Alzheimers Dis 33(3):807–822. doi:10.3233/JAD-2012-110029

    PubMed  Google Scholar 

  18. Mattsson N, Portelius E, Rolstad S, Gustavsson M, Andreasson U, Stridsberg M, Wallin A, Blennow K, Zetterberg H (2012) Longitudinal cerebrospinal fluid biomarkers over four years in mild cognitive impairment. J Alzheimers Dis 30(4):767–778. doi:10.3233/JAD-2012-120019

    PubMed  CAS  Google Scholar 

  19. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330(6012):1774. doi:10.1126/science.1197623

    Article  PubMed  CAS  Google Scholar 

  20. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34(7):939–944

    Article  PubMed  CAS  Google Scholar 

  21. Mollenhauer B, Bibl M, Trenkwalder C, Stiens G, Cepek L, Steinacker P, Ciesielczyk B, Neubert K, Wiltfang J, Kretzschmar HA, Poser S, Otto M (2005) Follow-up investigations in cerebrospinal fluid of patients with dementia with Lewy bodies and Alzheimer’s disease. J Neural Transm 112(7):933–948. doi:10.1007/s00702-004-0235-7

    Article  PubMed  CAS  Google Scholar 

  22. Mufson EJ, Binder L, Counts SE, DeKosky ST, de Toledo-Morrell L, Ginsberg SD, Ikonomovic MD, Perez SE, Scheff SW (2012) Mild cognitive impairment: pathology and mechanisms. Acta Neuropathol 123(1):13–30. doi:10.1007/s00401-011-0884-1

    Article  PubMed  CAS  Google Scholar 

  23. Peskind E, Nordberg A, Darreh-Shori T, Soininen H (2009) Safety of lumbar puncture procedures in patients with Alzheimer’s disease. Curr Alzheimer Res 6(3):290–292

    Article  PubMed  CAS  Google Scholar 

  24. Peskind ER, Riekse R, Quinn JF, Kaye J, Clark CM, Farlow MR, Decarli C, Chabal C, Vavrek D, Raskind MA, Galasko D (2005) Safety and acceptability of the research lumbar puncture. Alzheimer Dis Assoc Disord 19(4):220–225

    Article  PubMed  Google Scholar 

  25. Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, Jack CR Jr, Jagust WJ, Shaw LM, Toga AW, Trojanowski JQ, Weiner MW (2010) Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology 74(3):201–209. doi:10.1212/WNL.0b013e3181cb3e25

    Article  PubMed  Google Scholar 

  26. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56(3):303–308

    Article  PubMed  CAS  Google Scholar 

  27. Reiman EM, Quiroz YT, Fleisher AS, Chen K, Velez-Pardo C, Jimenez-Del-Rio M, Fagan AM, Shah AR, Alvarez S, Arbelaez A, Giraldo M, Acosta-Baena N, Sperling RA, Dickerson B, Stern CE, Tirado V, Munoz C, Reiman RA, Huentelman MJ, Alexander GE, Langbaum JB, Kosik KS, Tariot PN, Lopera F (2012) Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol 11(12):1048–1056. doi:10.1016/S1474-4422(12)70228-4

    Article  PubMed  CAS  Google Scholar 

  28. Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA (2009) The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol 66(2):200–208. doi:10.1002/ana.21706

    Article  PubMed  Google Scholar 

  29. Seppala TT, Koivisto AM, Hartikainen P, Helisalmi S, Soininen H, Herukka SK (2011) Longitudinal changes of CSF biomarkers in Alzheimer’s disease. J Alzheimers Dis 25(4):583–594. doi:10.3233/JAD-2011-101911

    PubMed  Google Scholar 

  30. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, Dean R, Siemers E, Potter W, Lee VM, Trojanowski JQ (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65(4):403–413. doi:10.1002/ana.21610

    Article  PubMed  CAS  Google Scholar 

  31. Shaw LM, Vanderstichele H, Knapik-Czajka M, Figurski M, Coart E, Blennow K, Soares H, Simon AJ, Lewczuk P, Dean RA, Siemers E, Potter W, Lee VM, Trojanowski JQ (2011) Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI. Acta Neuropathol 121(5):597–609. doi:10.1007/s00401-011-0808-0

    Article  PubMed  CAS  Google Scholar 

  32. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402(6761):537–540. doi:10.1038/990114

    Article  PubMed  CAS  Google Scholar 

  33. Stoer J, Bulirsch R (2002) Introduction to numerical analysis. Springer, Berlin

    Google Scholar 

  34. Tapiola T, Alafuzoff I, Herukka SK, Parkkinen L, Hartikainen P, Soininen H, Pirttila T (2009) Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 66(3):382–389. doi:10.1001/archneurol.2008.596

    Article  PubMed  Google Scholar 

  35. Toledo JB, Brettschneider J, Grossman M, Arnold SE, Hu WT, Xie SX, Lee VM, Shaw LM, Trojanowski JQ (2012) CSF biomarkers cutoffs: the importance of coincident neuropathological diseases. Acta Neuropathol 124(1):23–35. doi:10.1007/s00401-012-0983-7

    Article  PubMed  CAS  Google Scholar 

  36. Toledo JB, Vanderstichele H, Figurski M, Aisen PS, Petersen RC, Weiner MW, Jack CR Jr, Jagust W, Decarli C, Toga AW, Toledo E, Xie SX, Lee VM, Trojanowski JQ, Shaw LM (2011) Factors affecting Abeta plasma levels and their utility as biomarkers in ADNI. Acta Neuropathol 122(4):401–413. doi:10.1007/s00401-011-0861-8

    Article  PubMed  CAS  Google Scholar 

  37. Villain N, Chetelat G, Grassiot B, Bourgeat P, Jones G, Ellis KA, Ames D, Martins RN, Eustache F, Salvado O, Masters CL, Rowe CC, Villemagne VL (2012) Regional dynamics of amyloid-beta deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxelwise PiB-PET longitudinal study. Brain 135(Pt 7):2126–2139. doi:10.1093/brain/aws125

    Article  PubMed  Google Scholar 

  38. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, Szoeke C, Macaulay SL, Martins R, Maruff P, Ames D, Rowe CC, Masters CL (2013) Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12(4):357–367. doi:10.1016/S1474-4422(13)70044-9

    Article  PubMed  CAS  Google Scholar 

  39. Villemagne VL, Pike KE, Chetelat G, Ellis KA, Mulligan RS, Bourgeat P, Ackermann U, Jones G, Szoeke C, Salvado O, Martins R, O’Keefe G, Mathis CA, Klunk WE, Ames D, Masters CL, Rowe CC (2011) Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Ann Neurol 69(1):181–192. doi:10.1002/ana.22248

    Article  PubMed  CAS  Google Scholar 

  40. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E, Morris JC, Petersen RC, Saykin AJ, Schmidt ME, Shaw L, Siuciak JA, Soares H, Toga AW, Trojanowski JQ (2012) The Alzheimer’s disease Neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement 8(1 Suppl):S1–S68. doi:10.1016/j.jalz.2011.09.172

    Article  PubMed  Google Scholar 

  41. Yang E, Farnum M, Lobanov V, Schultz T, Verbeeck R, Raghavan N, Samtani MN, Novak G, Narayan V, DiBernardo A (2011) Quantifying the pathophysiological timeline of Alzheimer’s disease. J Alzheimers Dis 26(4):745–753. doi:10.3233/JAD-2011-110551

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the NIH/NIZ (AG10124 and AG24904). JQT is the William Maul Measey-Truman G. Schnabel, Jr., Professor of Geriatric Medicine and Gerontology and JBT is supported in part by a Grant of the Alfonso Martín Escudero Foundation. We would like to thank Xiaoyan Han, M.S. for her help with the statistical programming. J.B.T., S.X.X., J.Q.T. and LMS have no conflicts of interest. Data collection and sharing for this project were funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research are providing funds to support ADNI clinical sites in Canada. Private sector contributions are Rev November 7, 2012 facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH Grants P30 AG010129 and K01 AG030514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie M. Shaw.

Additional information

J. B. Toledo and S. X. Xie contributed equally to this paper.

For the Alzheimer’s Disease Neuroimaging Initiative

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 285 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toledo, J.B., Xie, S.X., Trojanowski, J.Q. et al. Longitudinal change in CSF Tau and Aβ biomarkers for up to 48 months in ADNI. Acta Neuropathol 126, 659–670 (2013). https://doi.org/10.1007/s00401-013-1151-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1151-4

Keywords

Navigation