Skip to main content

Advertisement

Log in

Novel mutation in MAPT exon 13 (p.N410H) causes corticobasal degeneration

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

In order to determine the frequency of microtubule-associated protein tau gene (MAPT) mutations and rare variants in CBD, we performed a systematic sequence analysis of MAPT coding and 3′ untranslated region (3′UTR) in a large cohort of autopsy-confirmed CBD patients (N = 109). This identified a novel MAPT mutation in exon 13, p.N410H, in a case that is neuropathologically indistinguishable from sporadic CBD. On immunoblot, the p.N410H mutation carrier had the same insoluble tau profile as seen in CBD. Additionally, tau expression analysis in brain tissue found a significant increase in the 4R/3R tau mRNA ratio (P = 0.04), indicating that p.N410H disrupts tau isoform homeostasis. Biochemically, recombinant tau protein with p.N410H showed a marked increase in tau filament formation compared to wild-type tau (P < 0.001), had a 19.2 % decrease in rate of microtubule assembly (P < 0.05), and a 10.3 % reduction in the extent of total microtubule polymerization (P < 0.01). Sequence analysis of the complete MAPT 3′UTR in autopsy-confirmed CBD cases further identified two rare variants with nominally significant association with CBD. An ATC nucleotide insertion (“MAPTv8”) was found in 4.6 % of CBD patients compared to 1.2 % of controls (P = 0.031, OR = 3.71), and rs186977284 in 4.6 % CBD patients, but only 0.9 % of controls (P = 0.04, OR = 3.58). Rs186977284 was also present in 2.7 % of a large cohort of autopsy-confirmed PSP patients (N = 566) and only 0.9 % of an additional control series (P = 0.034, OR = 3.08), extending the association to PSP. Our findings show that mutations in MAPT can cause CBD and MAPT non-coding variants may increase the risk of complex 4R tauopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams SJ, DeTure MA, McBride M, Dickson DW, Petrucelli L (2010) Three repeat isoforms of tau inhibit assembly of four repeat tau filaments. PLoS ONE 5:e10810

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ahmed Z, Josephs KA, Gonzalez J, DelleDonne A, Dickson DW (2008) Clinical and neuropathologic features of progressive supranuclear palsy with severe pallido-nigro-luysial degeneration and axonal dystrophy. Brain 131:460–472

    Article  PubMed  Google Scholar 

  3. Baker M, Litvan I, Houlden H et al (1999) Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 8:711–715

    Article  CAS  PubMed  Google Scholar 

  4. Boeve BF, Maraganore DM, Parisi JE, Ahlskog JE, Graff-Radford N, Caselli RJ, Dickson DW, Kokmen E, Petersen RC (1999) Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology 53:795–800

    Article  CAS  PubMed  Google Scholar 

  5. Bugiani O, Murrell JR, Giaccone G et al (1999) Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol 58:667–677

    Article  CAS  PubMed  Google Scholar 

  6. Conrad C, Andreadis A, Trojanowski JQ et al (1997) Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann Neurol 41:277–281

    Article  CAS  PubMed  Google Scholar 

  7. Coppola G, Chinnathambi S, Lee JJ et al (2012) Evidence for a role of the rare p. A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer’s diseases. Hum Mol Genet 21:3500–3512

    Article  CAS  PubMed  Google Scholar 

  8. Di Noto L, DeTure MA, Purich DL (1999) Disulfide-cross-linked tau and MAP2 homodimers readily promote microtubule assembly. Mol Cell Biol Res Commun 2:71–76

    Article  PubMed  Google Scholar 

  9. Dickson DW (1999) Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration. J Neurol 246(Suppl 2):II6–II15

    Article  PubMed  Google Scholar 

  10. Dickson DW, Bergeron C, Chin SS et al (2002) Office of rare diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol 61:935–946

    CAS  PubMed  Google Scholar 

  11. Ezquerra M, Pastor P, Valldeoriola F, Molinuevo JL, Blesa R, Tolosa E, Oliva R (1999) Identification of a novel polymorphism in the promoter region of the tau gene highly associated to progressive supranuclear palsy in humans. Neurosci Lett 275:183–186

    Article  CAS  PubMed  Google Scholar 

  12. Fekete R, Bainbridge M, Baizabal-Carvallo JF, Rivera A, Miller B, Du P, Kholodovych V, Powell S, Ondo W (2013) Exome sequencing in familial corticobasal degeneration. Parkinsonism Relat Disord. pii: S1353-8020(13)00234-4

  13. Geser F, Winton MJ, Kwong LK et al (2008) Pathological TDP-43 in parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Acta Neuropathol 115:133–145

    Article  CAS  PubMed  Google Scholar 

  14. Grover A, England E, Baker M et al (2003) A novel tau mutation in exon 9 (1260V) causes a four-repeat tauopathy. Exp Neurol 184:131–140

    Article  CAS  PubMed  Google Scholar 

  15. Hoglinger GU, Melhem NM, Dickson DW et al (2011) Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet 43:699–705

    Article  PubMed Central  PubMed  Google Scholar 

  16. Houlden H, Baker M, Morris HR et al (2001) Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology 56:1702–1706

    Article  CAS  PubMed  Google Scholar 

  17. Hutton M, Lendon CL, Rizzu P et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  CAS  PubMed  Google Scholar 

  18. Ingelsson M, Ramasamy K, Cantuti-Castelvetri I et al (2006) No alteration in tau exon 10 alternative splicing in tangle-bearing neurons of the Alzheimer’s disease brain. Acta Neuropathol 112:439–449

    Article  CAS  PubMed  Google Scholar 

  19. Kara E, Ling H, Pittman AM et al (2012) The MAPT p.A152T variant is a risk factor associated with tauopathies with atypical clinical and neuropathological features. Neurobiol Aging 33:2231, e2237–e2231, e2214

    Google Scholar 

  20. Kouri N, Murray ME, Hassan A et al (2011) Neuropathological features of corticobasal degeneration presenting as corticobasal syndrome or Richardson syndrome. Brain 134:3264–3275

    Article  PubMed  Google Scholar 

  21. Kouri N, Oshima K, Takahashi M, Murray ME, Ahmed Z, Parisi JE, Yen SH, Dickson DW (2013) Corticobasal degeneration with olivopontocerebellar atrophy and TDP-43 pathology: an unusual clinicopathologic variant of CBD. Acta Neuropathol 125:741–752

    Article  CAS  PubMed  Google Scholar 

  22. Kouri N, Whitwell JL, Josephs KA, Rademakers R, Dickson DW (2011) Corticobasal degeneration: a pathologically distinct 4R tauopathy. Nat Rev Neurol 7:263–272

    Article  CAS  PubMed  Google Scholar 

  23. Kovacs GG, Wohrer A, Strobel T, Botond G, Attems J, Budka H (2011) Unclassifiable tauopathy associated with an A152T variation in MAPT exon 7. Clin Neuropathol 30:3–10

    Article  CAS  PubMed  Google Scholar 

  24. Lippa CF, Zhukareva V, Kawarai T et al (2000) Frontotemporal dementia with novel tau pathology and a Glu342Val tau mutation. Ann Neurol 48:850–858

    Article  CAS  PubMed  Google Scholar 

  25. McKee AC, Gavett BE, Stern RA et al (2010) TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J Neuropathol Exp Neurol 69:918–929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nasreddine ZS, Loginov M, Clark LN et al (1999) From genotype to phenotype: a clinical pathological, and biochemical investigation of frontotemporal dementia and parkinsonism (FTDP-17) caused by the P301L tau mutation. Ann Neurol 45:704–715

    Article  CAS  PubMed  Google Scholar 

  27. Pastor P, Ezquerra M, Perez JC et al (2004) Novel haplotypes in 17q21 are associated with progressive supranuclear palsy. Ann Neurol 56:249–258

    Article  CAS  PubMed  Google Scholar 

  28. Poorkaj P, Bird TD, Wijsman E et al (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43:815–825

    Article  CAS  PubMed  Google Scholar 

  29. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Rademakers R, Melquist S, Cruts M et al (2005) High-density SNP haplotyping suggests altered regulation of tau gene expression in progressive supranuclear palsy. Hum Mol Genet 14:3281–3292

    Article  CAS  PubMed  Google Scholar 

  31. Santacruz K, Lewis J, Spires T et al (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 95:7737–7741

    Article  CAS  PubMed  Google Scholar 

  33. Spillantini MG, Yoshida H, Rizzini C, Lantos PL, Khan N, Rossor MN, Goedert M, Brown J (2000) A novel tau mutation (N296N) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies. Ann Neurol 48:939–943

    Article  CAS  PubMed  Google Scholar 

  34. Uryu K, Nakashima-Yasuda H, Forman MS et al (2008) Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol 67:555–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Williams DR, Holton JL, Strand K, Revesz T, Lees AJ (2007) Pure akinesia with gait freezing: a third clinical phenotype of progressive supranuclear palsy. Mov Disord 22:2235–2241

    Article  PubMed  Google Scholar 

  36. Wszolek ZK, Tsuboi Y, Farrer M, Uitti RJ, Hutton ML (2003) Hereditary tauopathies and parkinsonism. Adv Neurol 91:153–163

    CAS  PubMed  Google Scholar 

  37. Zarranz JJ, Ferrer I, Lezcano E et al (2005) A novel mutation (K317M) in the MAPT gene causes FTDP and motor neuron disease. Neurology 64:1578–1585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the patients and their families for support of this research. We would also like to thank Mariely De Jesus-Hernandez for sequencing assistance, Monica Castanedes Casey, Linda Rousseau, and Virginia Phillips for histological and immunohistochemistry assistance, and Beth Marten for logistic and administrative support in collecting material for this study. This work was funded by the Irene and Abe Pollin Fund for CBD. DWD is supported by the Mayo Foundation (Jacoby Professorship of Alzheimer Research) and NIH grants: P50-AG016574, P50-NS072187 and P01-AG003949. The Society for Progressive Supranuclear Palsy Brain Bank is supported by CurePSP. OAR is supported by NINDS NS078086 and P50 NS072187. ZKW is partially supported by the NIH/NINDS P50 NS072187, Mayo Clinic Center for Regenerative Medicine, Dystonia Medical Research Foundation, The Michael J. Fox Foundation for Parkinson’s Research, and the gift from Carl Edward Bolch, Jr. and Susan Bass Bolch. KAJ is supported by the NIH grants R01-AG037491 and R01-DC010367.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Rademakers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 940 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouri, N., Carlomagno, Y., Baker, M. et al. Novel mutation in MAPT exon 13 (p.N410H) causes corticobasal degeneration. Acta Neuropathol 127, 271–282 (2014). https://doi.org/10.1007/s00401-013-1193-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1193-7

Keywords

Navigation