Skip to main content

Advertisement

Log in

Early dipeptide repeat pathology in a frontotemporal dementia kindred with C9ORF72 mutation and intellectual disability

  • Case Report
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Familial cases of frontotemporal dementia (FTD) provide an opportunity to study the pathophysiology of this clinically diverse condition. The C9ORF72 mutation is the most common cause of familial FTD, recent pathological descriptions challenge existing TDP-43 based hypotheses of sporadic FTD pathogenesis. Non-ATG dependent translation of the hexanucleotide expansion into aggregating dipeptide repeat (DPR) proteins may represent a novel pathomechanism. We report detection of the DPR aggregates very early in C9ORF72 FTD development and also describe childhood intellectual disability as a clinical feature preceding dementia. The index case presented with psychiatric symptoms, progressing into typical FTD. Autopsy revealed extensive neuronal DPR aggregates but only minimal TDP-43 pathology. Her intellectually disabled elder son, also carrying the C9ORF72 mutation, died aged 26 years and at autopsy only DPR aggregates without TDP-43 were found. A second son also has intellectual disability, his C9ORF72 status is unknown, but chromosomal microarray revealed no other cause of disability. These cases both extend the existing phenotype of C9ORF72 mutation and highlight the potential significance of DPR translation early in disease development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Al-Sarraj S, King A, Troakes C et al (2011) p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol 122:691–702

    Article  CAS  PubMed  Google Scholar 

  2. Amador-Ortiz C, Lin W-L, Ahmed Z et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ash PEA, Bieniek KF, Gendron TF et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–646

    Article  CAS  PubMed  Google Scholar 

  4. Beck J, Poulter M, Hensman D et al (2013) Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 92:345–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bede P, Bokde ALW, Byrne S et al (2013) Multiparametric MRI study of ALS stratified for the C9orf72 genotype. Neurology 81:361–369

    Article  PubMed  Google Scholar 

  6. Van Blitterswijk M, Baker MC, DeJesus-Hernandez M et al (2013) C9ORF72 repeat expansions in cases with previously identified pathogenic mutations. Neurology 81:1332–1341

    Article  PubMed  Google Scholar 

  7. Van Blitterswijk M, Dejesus-Hernandez M, Niemantsverdriet E et al (2013) Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study. Lancet Neurol 12:978–988

    Article  PubMed  Google Scholar 

  8. Van Blitterswijk M, van Es MA, Hennekam EAM et al (2012) Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 21:3776–3784

    Article  PubMed  Google Scholar 

  9. Brettschneider J, Van Deerlin VM, Robinson JL et al (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol 123:825–839

    Article  PubMed Central  PubMed  Google Scholar 

  10. Brettschneider J, Del Tredici K, Toledo JB et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38

    Article  CAS  PubMed  Google Scholar 

  11. Calvo A, Moglia C, Canosa A et al (2012) Amyotrophic lateral sclerosis/frontotemporal dementia with predominant manifestations of obsessive-compulsive disorder associated to GGGGCC expansion of the c9orf72 gene. J Neurol 259:2723–2725

    PubMed  Google Scholar 

  12. Chiò A, Borghero G, Restagno G et al (2012) Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72. Brain 135:784–793

    Article  PubMed  Google Scholar 

  13. Collins M, Riascos D, Kovalik T et al (2012) The RNA-binding motif 45 (RBM45) protein accumulates in inclusion bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD–TDP) patients. Acta Neuropathol 124:717–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Daoud H, Suhail H, Sabbagh M et al (2012) C9orf72 hexanucleotide repeat expansions as the causative mutation for chromosome 9p21-linked amyotrophic lateral sclerosis and frontotemporal dementia. Arch Neurol 69:1159–1163

    Article  PubMed  Google Scholar 

  15. Dejesus-hernandez M, Mackenzie IRRRR, Boeve BFFFF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fratta P, Mizielinska S, Nicoll AJ et al (2012) C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci Rep 2:1016

    Article  PubMed Central  PubMed  Google Scholar 

  17. Gendron TF, Bieniek KF, Zhang Y-J et al (2013) Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol 126:829–844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Geschwind DH, Robidoux J, Alarcón M et al (2001) Dementia and neurodevelopmental predisposition: cognitive dysfunction in presymptomatic subjects precedes dementia by decades in frontotemporal dementia. Ann Neurol 50:741–746

    Article  CAS  PubMed  Google Scholar 

  19. Gijselinck I, Van Langenhove T, van der Zee J et al (2012) A C9orf72 promoter repeat expansion in a Flanders–Belgian cohort with disorders of the frontotemporal lobar degeneration–amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11:54–65

    Article  CAS  PubMed  Google Scholar 

  20. Gómez-Tortosa E, Gallego J, Guerrero-López R et al (2013) C9ORF72 hexanucleotide expansions of 20–22 repeats are associated with frontotemporal deterioration. Neurology 80:0–6

    Article  Google Scholar 

  21. Harley HG, Rundle SA, Macmillan JC et al (1993) Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am J Hum Genet 52:1164–1174

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Hensman Moss DJ, Poulter M, Beck J et al (2013) C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology (epub ahead of print)

  23. Hodges J (2012) Familial frontotemporal dementia and amyotrophic lateral sclerosis associated with the C9ORF72 hexanucleotide repeat. Brain 135:652–655

    Article  PubMed  Google Scholar 

  24. King A, Al-Sarraj S, Troakes C et al (2013) Mixed tau, TDP-43 and p62 pathology in FTLD associated with a C9ORF72 repeat expansion and p.Ala239Thr MAPT (tau) variant. Acta Neuropathol 125:303–310

    Article  CAS  PubMed  Google Scholar 

  25. Lagier-Tourenne C, Baughn M, Rigo F et al (2013) Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci USA 110:E4530–E4539

    Article  CAS  PubMed  Google Scholar 

  26. Lee J-MJ-H, Ramos EM, Gillis T et al (2012) CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 78:690–695

    Article  CAS  PubMed  Google Scholar 

  27. Lindquist SG, Duno M, Batbayli M et al (2013) Corticobasal and ataxia syndromes widen the spectrum of C9ORF72 hexanucleotide expansion disease. Clin Genet 83:279–283

    Article  CAS  PubMed  Google Scholar 

  28. Mackenzie IR a, Frick P, Neumann M (2013) The neuropathology associated with repeat expansions in the C9ORF72 gene. Acta Neuropathol

  29. Mackenzie IRA, Neumann M, Baborie A et al (2011) A harmonized classification system for FTLD–TDP pathology. Acta Neuropathol 122:111–113

    Article  PubMed Central  PubMed  Google Scholar 

  30. Mackenzie IR, Arzberger T, Kremmer E et al (2013) Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol 126:859–879

    Article  CAS  PubMed  Google Scholar 

  31. Mahoney CJ, Beck J, Rohrer JD et al (2012) Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain 135:736–750

    Article  PubMed  Google Scholar 

  32. Majounie E, Renton AE, Mok K et al (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11:323–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Mizielinska S, Lashley T, Norona FE et al (2013) C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol 126:845–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mori K, Arzberger T, Grässer F a et al (2013) Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol 126:881–893

    Article  CAS  PubMed  Google Scholar 

  35. Mori K, Lammich S, Mackenzie IR a et al (2013) hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 125:413–423

    Article  CAS  PubMed  Google Scholar 

  36. Mori K, Weng S-M, Arzberger T et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–1338

    Article  CAS  PubMed  Google Scholar 

  37. Morita M, Al-Chalabi A, Andersen PM et al (2006) A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66:839–844

    Article  CAS  PubMed  Google Scholar 

  38. Murray ME, DeJesus-Hernandez M, Rutherford NJ et al (2011) Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol 122:673–690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS–FTD. Neuron 72:257–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Restagno G, Brunetti M, Ossola I et al (2012) ALS/FTD phenotype in two Sardinian families carrying both C9ORF72 and TARDBP mutations. J Neurol Neurosurg Psychiatry 83:730–733

    Article  PubMed  Google Scholar 

  41. Ringman JM, Diaz-Olavarrieta C, Rodriguez Y et al (2005) Neuropsychological function in nondemented carriers of presenilin-1 mutations. Neurology 65:552–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Rogalski E, Johnson N, Weintraub S, Mesulam M (2008) Increased frequency of learning disability in patients with primary progressive aphasia and their first-degree relatives. Arch Neurol 65:244–248

    Article  PubMed Central  PubMed  Google Scholar 

  43. Rutherford NJ, Heckman MG, Dejesus-Hernandez M et al (2012) Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype. Neurobiol Aging 33(2950):e5–e7

    PubMed  Google Scholar 

  44. Seelaar H, Rohrer JD, Pijnenburg YAL et al (2011) Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 82:476–486

    Article  PubMed  Google Scholar 

  45. Sha SJ, Takada LTLLT, Rankin KKP et al (2012) Frontotemporal dementia due to C9ORF72 mutations: clinical and imaging features. Neurology 79:1002–1011

    Article  PubMed  Google Scholar 

  46. Smith BN, Newhouse S, Shatunov A et al (2013) The C9ORF72 expansion mutation is a common cause of ALS ± FTD in Europe and has a single founder. Eur J Hum Genet 21:102–108

    Article  CAS  PubMed  Google Scholar 

  47. Snowden JS, Rollinson S, Thompson JC et al (2012) Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135:693–708

    Article  PubMed  Google Scholar 

  48. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  CAS  PubMed  Google Scholar 

  49. Takada LT, Pimentel MLV, Dejesus-Hernandez M et al (2012) Frontotemporal dementia in a Brazilian kindred with the c9orf72 mutation. Arch Neurol 69:1149–1153

    Article  PubMed Central  PubMed  Google Scholar 

  50. Vance C, Al-Chalabi A, Ruddy D et al (2006) Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. Brain 129:868–876

    Article  PubMed  Google Scholar 

  51. Wegorzewska I, Bell S, Cairns NJ et al (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 106:18809–18814

    Article  CAS  PubMed  Google Scholar 

  52. Whitwell JL, Weigand SD, Boeve BF et al (2012) Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain 135:794–806

    Article  PubMed  Google Scholar 

  53. Williams KL, Fifita JA, Vucic S et al (2013) Pathophysiological insights into ALS with C9ORF72 expansions. J Neurol Neurosurg Psychiatry 84:931–935

    Article  PubMed  Google Scholar 

  54. Wils H, Kleinberger G, Janssens J et al (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107:3858–3863

    Article  CAS  PubMed  Google Scholar 

  55. Xu Y-F, Gendron TF, Zhang Y-J et al (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30:10851–10859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Xu Z, Poidevin M, Li X et al (2013) Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc Natl Acad Sci USA 110:7778–7783

    Article  CAS  PubMed  Google Scholar 

  57. Zu T, Gibbens B, Doty NS et al (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci USA 108:260–265

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MP is supported by the Guarantors of Brain. DE is supported by the Helmholtz Young Investigator program (HZ-NG-607) and by a grant of the Centres of Excellence in Neurodegeneration Research (CoEN). IM is supported by Canadian Institutes of Health Research (74580) and the Pacific Alzheimer’s Research Foundation (C06-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm Proudfoot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proudfoot, M., Gutowski, N.J., Edbauer, D. et al. Early dipeptide repeat pathology in a frontotemporal dementia kindred with C9ORF72 mutation and intellectual disability. Acta Neuropathol 127, 451–458 (2014). https://doi.org/10.1007/s00401-014-1245-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-014-1245-7

Keywords

Navigation