Skip to main content

Advertisement

Log in

Subclinical primary retinal pathology in neuromyelitis optica spectrum disorder

Journal of Neurology Aims and scope Submit manuscript

Abstract

Foveal thickness may be a more sensitive indicator of primary retinal pathology than retinal nerve fiber layer thickness since the fovea contains no or sparse retinal nerve fiber layer, which coalesces into axons of the optic nerve. To our knowledge, few quantitative in vivo studies have investigated foveal thickness. By using optical coherence tomography, we measured foveal thickness to evaluate intrinsic retinal pathology. Seventy-two neuromyelitis optica spectrum disorder patients (99 eyes with optic neuritis and 45 eyes without optic neuritis) and 34 age-matched controls were included. Foveal thinning was observed both in eyes with non-optic neuritis (185.1 µm, p < 0.001) and optic neuritis (185.0 µm, p < 0.001) relative to controls (205.0 µm). Compared to controls, eyes with non-optic neuritis did not have peripapillary retinal nerve fiber layer thinning, but showed foveal thinning (p < 0.001). In neuromyelitis optica spectrum disorder, foveal thickness correlated with 2.5 % low contrast visual acuity, while retinal nerve fiber layer thickness correlated with high or low contrast visual acuity, extended disability status scale, and disease duration. In this study, we observed foveal thinning irrespective of optic neuritis; thus, we believe that subclinical primary retinal pathology, prior to retinal nerve fiber layer thinning, may exist in neuromyelitis optica spectrum disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, Nakashima I, Weinshenker BG (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364:2106–2112

    Article  CAS  PubMed  Google Scholar 

  2. Matiello M, Lennon VA, Jacob A, Pittock SJ, Lucchinetti CF, Wingerchuk DM, Weinshenker BG (2008) NMO-IgG predicts the outcome of recurrent optic neuritis. Neurology 70:2197–2200

    Article  CAS  PubMed  Google Scholar 

  3. Kim SH, Kim W, Li XF, Jung IJ, Kim HJ (2012) Clinical spectrum of CNS aquaporin-4 autoimmunity. Neurology 78:1179–1185

    Article  CAS  PubMed  Google Scholar 

  4. Merle H, Olindo S, Donnio A, Richer R, Smadja D, Cabre P (2008) Retinal peripapillary nerve fiber layer thickness in neuromyelitis optica. Invest Ophthalmol Vis Sci 49:4412–4417

    Article  PubMed  Google Scholar 

  5. Naismith RT, Tutlam NT, Xu J, Klawiter EC, Shepherd J, Trinkaus K, Song SK, Cross AH (2009) Optical coherence tomography differs in neuromyelitis optica compared with multiple sclerosis. Neurology 72:1077–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schneider E, Zimmermann H, Oberwahrenbrock T, Kaufhold F, Kadas EM, Petzold A, Bilger F, Borisow N, Jarius S, Wildemann B, Ruprecht K, Brandt AU, Paul F (2013) Optical Coherence Tomography Reveals Distinct Patterns of Retinal Damage in Neuromyelitis Optica and Multiple Sclerosis. PLoS One 8:e66151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Syc SB, Saidha S, Newsome SD, Ratchford JN, Levy M, Ford E, Crainiceanu CM, Durbin MK, Oakley JD, Meyer SA, Frohman EM, Calabresi PA (2012) Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain J Neurol 135:521–533

    Article  Google Scholar 

  8. Provis JM, Dubis AM, Maddess T, Carroll J (2013) Adaptation of the central retina for high acuity vision: cones, the fovea and the avascular zone. Prog Retinal Eye Res 35:63–81

    Article  Google Scholar 

  9. Spund B, Ding Y, Liu T, Selesnick I, Glazman S, Shrier EM, Bodis-Wollner I (2013) Remodeling of the fovea in Parkinson disease. J Neural Transm (Vienna, Austria: 1996) 120:745–753

    Article  CAS  Google Scholar 

  10. Miri S, Shrier EM, Glazman S, Ding Y, Selesnick I, Kozlowski PB, Bodis-Wollner I (2015) The avascular zone and neuronal remodeling of the fovea in Parkinson disease. Ann Clin Trans Neurol 2:196–201

    Article  Google Scholar 

  11. Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG (2006) Revised diagnostic criteria for neuromyelitis optica. Neurology 66:1485–1489

    Article  CAS  PubMed  Google Scholar 

  12. Costello F, Hodge W, Pan YI, Eggenberger E, Coupland S, Kardon RH (2008) Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography. Mult Scler 14:893–905

    Article  CAS  PubMed  Google Scholar 

  13. Cheung CY, Leung CK, Lin D, Pang CP, Lam DS (2008) Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography. Ophthalmology 115:1347–1351 (1351. e1341–1342)

    Article  PubMed  Google Scholar 

  14. Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS (2005) Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 46:2012–2017

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS (2005) Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112:1734–1746

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tatrai E, Simo M, Iljicsov A, Nemeth J, Debuc DC, Somfai GM (2012) In vivo evaluation of retinal neurodegeneration in patients with multiple sclerosis. PLoS One 7:e30922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sotirchos ES, Saidha S, Byraiah G, Mealy MA, Ibrahim MA, Sepah YJ, Newsome SD, Ratchford JN, Frohman EM, Balcer LJ, Crainiceanu CM, Nguyen QD, Levy M, Calabresi PA (2013) In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology 80:1406–1414

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ratchford JN, Quigg ME, Conger A, Frohman T, Frohman E, Balcer LJ, Calabresi PA, Kerr DA (2009) Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology 73:302–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Seze J, Blanc F, Jeanjean L, Zephir H, Labauge P, Bouyon M, Ballonzoli L, Castelnovo G, Fleury M, Defoort S, Vermersch P, Speeg C (2008) Optical coherence tomography in neuromyelitis optica. Arch Neurol 65:920–923

    PubMed  Google Scholar 

  20. Monteiro ML, Fernandes DB, Apostolos-Pereira SL, Callegaro D (2012) Quantification of retinal neural loss in patients with neuromyelitis optica and multiple sclerosis with or without optic neuritis using Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:3959–3966

    Article  PubMed  Google Scholar 

  21. Lange AP, Sadjadi R, Zhu F, Alkabie S, Costello F, Traboulsee AL (2013) Spectral-domain optical coherence tomography of retinal nerve fiber layer thickness in NMO patients. J Neuro-Ophthalmol Off J North Am Neuro-Ophthalmol Soc 33:213–219

    Article  Google Scholar 

  22. Nagelhus EA, Veruki ML, Torp R, Haug FM, Laake JH, Nielsen S, Agre P, Ottersen OP (1998) Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Muller cells and fibrous astrocytes. J Neurosci Off J Soc Neurosci 18:2506–2519

    CAS  Google Scholar 

  23. Iandiev I, Pannicke T, Biedermann B, Wiedemann P, Reichenbach A, Bringmann A (2006) Ischemia-reperfusion alters the immunolocalization of glial aquaporins in rat retina. Neurosci Lett 408:108–112

    Article  CAS  PubMed  Google Scholar 

  24. Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129:905–913

    Article  CAS  PubMed  Google Scholar 

  25. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Muller cells in the healthy and diseased retina. Prog Retinal Eye Res 25:397–424

    Article  CAS  Google Scholar 

  26. Pannicke T, Wurm A, Iandiev I, Hollborn M, Linnertz R, Binder DK, Kohen L, Wiedemann P, Steinhauser C, Reichenbach A, Bringmann A (2010) Deletion of aquaporin-4 renders retinal glial cells more susceptible to osmotic stress. J Neurosci Res 88:2877–2888

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Hee Kim.

Ethics declarations

Funding

This study was supported by Korea Research Foundation Grant funded by Korea Government (KRF 2009-0067502) to Kim NH.

Conflicts of interest

Dr. Jeong IH, Dr. Jeong KS, and Dr. Park CY report no disclosures. Dr. Kim NH has given talks and received honoraria from Bayer Schering Pharma, Merck Serono, and UCB. Dr. Kim HJ has given talks, consulted and received honoraria from Bayer Schering Pharma, Biogen, Genzyme, MedImmune, Merck Serono, Novartis, Teva-Handok, and UCB; received a grant from the Ministry of Science, ICT & Future Planning and research funding from Genzyme, Kael-GemVax, Merck Serono, Teva-Handok, and UCB. He serves on a steering committee for MedImmune and as an editor for Multiple Sclerosis Journal—Experimental, Translational and Clinical.

Ethical standards

The ethics committees of all participating institutions approved the study. Ethical standards were consistent with the 1964 Declaration of Helsinki and its later amendments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, I.H., Kim, H.J., Kim, NH. et al. Subclinical primary retinal pathology in neuromyelitis optica spectrum disorder. J Neurol 263, 1343–1348 (2016). https://doi.org/10.1007/s00415-016-8138-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8138-8

Keywords

Navigation