Skip to main content

Advertisement

Log in

Epigallocatechin Gallate (EGCG) Inhibits Alpha-Synuclein Aggregation: A Potential Agent for Parkinson’s Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Protein aggregation is a prominent feature of many neurodegenerative disorders including Parkinson’s disease (PD). Aggregation of alpha-synuclein (SNCA) may underlie the pathology of PD. They are the main components of Lewy bodies and dystrophic neurites that are the intraneuronal inclusions characteristic of the disease. We have demonstrated that the polyphenol (−)-epi-gallocatechine gallate (EGCG) inhibited SNCA aggregation, which made it a candidate for therapeutic intervention in PD. Three methods were used: SNCA fibril formation inhibition by EGCG in incubates; inhibition of the SNCA fluorophore A-Syn-HiLyte488 binding to plated SNCA in microwells; and inhibition of the A-Syn-HiLyte488 probe binding to aggregated SNCA in postmortem PD tissue. Recombinant human SNCA was incubated under conditions that result in fibril formation. The aggregation was blocked by 100 nM EGCG in a concentration-dependent manner, as shown by an absence of thioflavin T binding. In the microplate assay system, the ED50 of EGCG inhibition of A-Syn-HiLyte488 binding to coated SNCA was 250 nM. In the PD tissue based assay, SNCA aggregates were recognized by incubation with 7 nM of A-Syn-HiLyte488. This binding was blocked by EGCG in a concentration dependent manner. The SNCA amino acid sites, which potentially interacted with EGCG, were detected on peptide membranes. It was implicated that EGCG binds to SNCA by instable hydrophobic interactions. In this study, we suggested that EGCG could be a potent remodeling agent of SNCA aggregates and a potential disease modifying drug for the treatment of PD and other α-synucleinopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Olanow CW, Perl DP, DeMartino GN, McNaught KS (2004) Lewy-body formation is an aggresome-related process: a hypothesis. Lancet Neurol 3:496–503

    Article  PubMed  Google Scholar 

  2. Shults CW (2006) Lewy bodies. Proc Natl Acad Sci USA 103:1661–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  4. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95:6469–6473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dickson DW (2001) Alpha-synuclein and the lewy body disorders. Curr Opin Neurol 14:423–432

    Article  CAS  PubMed  Google Scholar 

  6. Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296:1991–1995

    Article  CAS  PubMed  Google Scholar 

  7. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nature Rev Neurosci 3:932–942

    Article  CAS  Google Scholar 

  8. Paleologou KE, Irvine GB, El-Agnaf OM (2005) Alpha-synuclein aggregation in neurodegenerative diseases and its inhibition as a potential therapeutic strategy. Biochem Soc Trans 33:1106–1110

    Article  CAS  PubMed  Google Scholar 

  9. Giasson BI, Murray IV, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 276:2380–2386

    Article  CAS  PubMed  Google Scholar 

  10. Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA (2000) Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci USA 97:4897–4902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murray IV, Giasson BI, Quinn SM, Koppaka V, Axelsen PH, Ischiropoulos H, Trojanowski JQ, Lee VM (2003) Role of alpha-synuclein carboxy-terminus on fibril formation in vitro. BioChemistry 42:8530–8540

    Article  CAS  PubMed  Google Scholar 

  12. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4:1318–1320

    Article  CAS  PubMed  Google Scholar 

  13. Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman SA, Martin F, Sitney K, Denis P, Louis JC, Wypych J, Biere AL, Citron M (1999) Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 274:9843–9846

    Article  CAS  PubMed  Google Scholar 

  14. Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE (2010) EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci USA 107:7710–7715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lorenzen N, Nielsen SB, Yoshimura Y, Vad BS, Andersen CB, Betzer C, Kaspersen JD, Christiansen G, Pedersen JS, Jensen PH, Mulder FA, Otzen DE (2014) How epigallocatechin gallate can inhibit alpha-synuclein oligomer toxicity in vitro. J Biol Chem 289:21299–21310

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nature Struct Mol Biol 15:558–566

    Article  CAS  Google Scholar 

  17. Cheng B, Gong H, Xiao H, Petersen RB, Zheng L, Huang K (2013) Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases. Biochim Biophys Acta 1830:4860–4871

    Article  CAS  PubMed  Google Scholar 

  18. Weinreb O, Mandel S, Amit T, Youdim MB (2004) Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 15:506–516

    Article  CAS  PubMed  Google Scholar 

  19. Mandel SA, Amit T, Kalfon L, Reznichenko L, Weinreb O, Youdim MB (2008) Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG). J Alzheimer’s Dis 15:211–222

    CAS  Google Scholar 

  20. Roberts BE, Shorter J (2008) Escaping amyloid fate. Nature Struct Mol Biol 15:544–546

    Article  CAS  Google Scholar 

  21. Guo JP, Petric M, Campbell W, McGeer PL (2004) SARS corona virus peptides recognized by antibodies in the sera of convalescent cases. Virology 324:251–256

    Article  CAS  PubMed  Google Scholar 

  22. Guo JP, Arai T, Miklossy J, McGeer PL (2006) Abeta and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer’s disease. Proc Natl Acad Sci USA 103:1953–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nature Rev Neurosci 14:38–48

    Article  CAS  Google Scholar 

  24. Giehm L, Svergun DI, Otzen DE, Vestergaard B (2011) Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation. Proc Natl Acad Sci USA 108:3246–3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Colla E, Jensen PH, Pletnikova O, Troncoso JC, Glabe C, Lee MK (2012) Accumulation of toxic alpha-synuclein oligomer within endoplasmic reticulum occurs in alpha-synucleinopathy in vivo. J Neurosci 32:3301–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27:9220–9232

    Article  CAS  PubMed  Google Scholar 

  27. Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) Alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hashimoto M, Kawahara K, Bar-On P, Rockenstein E, Crews L, Masliah E (2004) The role of alpha-synuclein assembly and metabolism in the pathogenesis of lewy body disease. J Mol Neurosci 24:343–352

    Article  CAS  PubMed  Google Scholar 

  29. Alim MA, Ma QL, Takeda K, Aizawa T, Matsubara M, Nakamura M, Asada A, Saito T, Kaji H, Yoshii M, Hisanaga S, Ueda K (2004) Demonstration of a role for alpha-synuclein as a functional microtubule-associated protein. J Alzheimer’s Dis6:435–442 (discussion 443–439)

    Google Scholar 

  30. Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL (2004) The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils. J Biol Chem 279:26846–26857

    Article  CAS  PubMed  Google Scholar 

  31. Gerard M, Debyser Z, Desender L, Kahle PJ, Baert J, Baekelandt V, Engelborghs Y (2006) The aggregation of alpha-synuclein is stimulated by FK506 binding proteins as shown by fluorescence correlation spectroscopy. FASEB J 20:524–526

    CAS  PubMed  Google Scholar 

  32. Gerard M, Deleersnijder A, Daniels V, Schreurs S, Munck S, Reumers V, Pottel H, Engelborghs Y, Van den Haute C, Taymans JM, Debyser Z, Baekelandt V (2010) Inhibition of FK506 binding proteins reduces alpha-synuclein aggregation and Parkinson’s disease-like pathology. J Neurosci 30:2454–2463

    Article  CAS  PubMed  Google Scholar 

  33. Aelvoet SA, Ibrahimi A, Macchi F, Gijsbers R, Van den Haute C, Debyser Z, Baekelandt V (2014) Noninvasive bioluminescence imaging of alpha-synuclein oligomerization in mouse brain using split firefly luciferase reporters. J Neurosci 34:16518–16532

    Article  PubMed  Google Scholar 

  34. Kobayashi M, Kim J, Kobayashi N, Han S, Nakamura C, Ikebukuro K, Sode K (2006) Pyrroloquinoline quinone (PQQ) prevents fibril formation of alpha-synuclein. Biochem Biophys Res Commun 349:1139–1144

    Article  CAS  PubMed  Google Scholar 

  35. Kim J, Kobayashi M, Fukuda M, Ogasawara D, Kobayashi N, Han S, Nakamura C, Inada M, Miyaura C, Ikebukuro K, Sode K (2010) Pyrroloquinoline quinone inhibits the fibrillation of amyloid proteins. Prion 4:26–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoshida W, Kobayashi N, Sasaki Y, Ikebukuro K, Sode K (2013) Partial peptide of alpha-synuclein modified with small-molecule inhibitors specifically inhibits amyloid fibrillation of alpha-synuclein. Int J Mol Sci 14:2590–2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hudson SA, Ecroyd H, Dehle FC, Musgrave IF, Carver JA (2009) (−)-epigallocatechin-3-gallate (EGCG) maintains kappa-casein in its pre-fibrillar state without redirecting its aggregation pathway. J Mol Biol 392:689–700

    Article  CAS  PubMed  Google Scholar 

  38. Liu M, Chen F, Sha L, Wang S, Tao L, Yao L, He M, Yao Z, Liu H, Zhu Z, Zhang Z, Zheng Z, Sha X, Wei M (2014) (-)-Epigallocatechin-3-gallate ameliorates learning and memory deficits by adjusting the balance of TrkA/p75NTR signaling in APP/PS1 transgenic mice. Mol Neurobiol 49:1350–1363

    Article  CAS  PubMed  Google Scholar 

  39. Chen WC, Hsieh SR, Chiu CH, Hsu BD, Liou YM (2014) Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts. J Biomed Sci 21:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pascal C, Pate F, Cheynier V, Delsuc MA (2009) Study of the interactions between a proline-rich protein and a flavan-3-ol by NMR: residual structures in the natively unfolded protein provides anchorage points for the ligands. Biopolymers 91:745–756

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

No conflict of interest exits in the submission of this manuscript. This work is funded by National Natural Science Foundation of China (No. 81171206) and the grand from Key Laboratory for Neurodegenerative Diseases of Ministry of Education (No.2015SJBX05). We thank Dr. Jian Mao and Jiangkun Lu for language editing, and Rui Zhou for editing the pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Qing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 770 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, Y., Quan, Z. et al. Epigallocatechin Gallate (EGCG) Inhibits Alpha-Synuclein Aggregation: A Potential Agent for Parkinson’s Disease. Neurochem Res 41, 2788–2796 (2016). https://doi.org/10.1007/s11064-016-1995-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1995-9

Keywords

Navigation