Skip to main content

Advertisement

Log in

Effects of 2-Chlorodeoxyadenosine (Cladribine) on Primary Rat Microglia

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

2-chlorodeoxyadenosine (CdA, Cladribine) is an immunosuppressant that has recently been shown to be effective in the treatment of multiple sclerosis (MS). There is extensive clinical experience with CdA for the treatment of neoplastic diseases, especially hematologic malignancies, due to its apoptotic effects on leukemic and several other neoplastic cells. Furthermore, CdA crosses the blood–brain-barrier and thus may also exert its effects directly on cells of the central nervous system (CNS). Therefore, we have studied the effects of CdA on cultured primary rat microglia, the resident macrophage in the CNS, which is also thought to be involved in the pathogenesis of MS. Treatment of microglia with CdA inhibited their proliferation and induced apoptosis. Phosphorylation of CdA to CdATP was required for both effects and was inhibited by deoxycytidine. Furthermore, activation of caspase-3 and -9 revealed the involvement of the intrinsic mitochondrial mediated apoptotic pathway. However, the absence of caspase-8 activation specified independency from the extrinsic death receptor mediated apoptosis. The mitochondrial membrane potential was significantly reduced after CdA exposure and was not conserved with Bax or caspase-3 inhibition. Assessment of DNA fragmentation by TUNEL and DNA-release-assay showed microglia with fragmented nuclei. Other functions of microglia like phagocytosis and LPS-induced NO and TNF-α release were not affected by CdA. These data suggest a potential of CdA treatment to induce not only leukopenia but also apoptosis in microglia in the CNS. These results help to understand the mechanism of action of CdA in CNS diseases and may open the possibility to target microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CdA:

2-chlorodeoxyadenosine

CNS:

Central nervous system

dCyd:

Deoxycytidine

DNA:

Deoxyribonucleic acid

DP:

Dipyridamole

MS:

Multiple sclerosis

NO:

Nitric oxide

TNF:

Tumor necrosis factor

References

  • Bampton ET, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM (2005) The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy 1:23–36

    Article  PubMed  CAS  Google Scholar 

  • Barbieri D, Abbracchio MP, Salvioli S, Monti D, Cossarizza A, Ceruti S, Brambilla R, Cattabeni F, Jacobson KA, Franceschi C (1998) Apoptosis by 2-chloro-2′-deoxy-adenosine and 2-chloro-\adenosine in human peripheral blood mononuclear cells. Neurochem Int 32:493–504

    Article  PubMed  CAS  Google Scholar 

  • Bartosik-Psujek H, Belniak E, Mitosek-Szewczyk K, Dobosz B, Stelmasiak Z (2004) Interleukin-8 and RANTES levels in patients with relapsing-remitting multiple sclerosis (RR-MS) treated with cladribine. Acta Neurol Scand 109:390–392

    Article  PubMed  CAS  Google Scholar 

  • Benveniste EN (1997) Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med 75:165–173

    Article  PubMed  CAS  Google Scholar 

  • Beutler E (1992) Cladribine (2-chlorodeoxyadenosine). Lancet 340:952–956

    Article  PubMed  CAS  Google Scholar 

  • Bradl M, Lassmann H (2009) Progressive multiple sclerosis. Semin Immunopathol 31:455–465

    Article  PubMed  CAS  Google Scholar 

  • Carson DA, Wasson DB, Taetle R, Yu A (1983) Specific toxicity of 2-chlorodeoxyadenosine toward resting and proliferating human lymphocytes. Blood 62:737–743

    PubMed  CAS  Google Scholar 

  • Castejon R, Vargas JA, Briz M, Berrocal E, Romero Y, Gea-Banacloche JC, Fernandez MN, Durantez A (1997) Induction of apoptosis by 2-chlorodeoxyadenosine in B cell chronic lymphocytic leukemia. Leukemia 11:1253–1257

    Article  PubMed  CAS  Google Scholar 

  • Chow KU, Boehrer S, Napieralski S, Nowak D, Knau A, Hoelzer D, Mitrou PS, Weidmann E (2003) In AML cell lines Ara-C combined with purine analogues is able to exert synergistic as well as antagonistic effects on proliferation, apoptosis and disruption of mitochondrial membrane potential. Leuk Lymphoma 44:165–173

    Article  PubMed  CAS  Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    PubMed  CAS  Google Scholar 

  • Dal Canto MC, Melvold RW, Kim BS, Miller SD (1995) Two models of multiple sclerosis: experimental allergic encephalomyelitis (EAE) and Theiler’s murine encephalomyelitis virus (TMEV) infection. A pathological and immunological comparison. Microsc Res Tech 32:215–229

    Article  PubMed  CAS  Google Scholar 

  • Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    PubMed  CAS  Google Scholar 

  • Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Soelberg Sorensen P, Vermersch P, Chang P, Hamlett A, Musch B, Greenberg SJ (2010) A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 362:416–426

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni G, Cook S, Rammohan K, Rieckmann P, Sorensen PS, Vermersch P, Hamlett A, Viglietta V, Greenberg S (2011) Sustained disease-activity-free status in patients with relapsing-remitting multiple sclerosis treated with cladribine tablets in the CLARITY study: a post-hoc and subgroup analysis. Lancet Neurol 10:329–337

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6:2163–2178

    PubMed  CAS  Google Scholar 

  • Gupta S, Kass GE, Szegezdi E, Joseph B (2009) The mitochondrial death pathway: a promising therapeutic target in diseases. J Cell Mol Med 13:1004–1033

    Article  PubMed  CAS  Google Scholar 

  • Hall GL, Wing MG, Compston DA, Scolding NJ (1997) beta-Interferon regulates the immunomodulatory activity of neonatal rodent microglia. J Neuroimmunol 72:11–19

    Article  PubMed  CAS  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    PubMed  CAS  Google Scholar 

  • Liliemark J (1997) The clinical pharmacokinetics of cladribine. Clin Pharmacokinet 32:120–131

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Buolamwini JK (2007) Synthesis, flow cytometric evaluation, and identification of highly potent dipyridamole analogues as equilibrative nucleoside transporter 1 inhibitors. J Med Chem 50:3906–3920

    Article  PubMed  CAS  Google Scholar 

  • Mack CL, Vanderlugt-Castaneda CL, Neville KL, Miller SD (2003) Microglia are activated to become competent antigen presenting and effector cells in the inflammatory environment of the Theiler’s virus model of multiple sclerosis. J Neuroimmunol 144:68–79

    Article  PubMed  CAS  Google Scholar 

  • Markasz L, Stuber G, Vanherberghen B, Flaberg E, Olah E, Carbone E, Eksborg S, Klein E, Skribek H, Szekely L (2007) Effect of frequently used chemotherapeutic drugs on the cytotoxic activity of human natural killer cells. Mol Cancer Ther 6:644–654

    Article  PubMed  CAS  Google Scholar 

  • Marzo I, Perez-Galan P, Giraldo P, Rubio-Felix D, Anel A, Naval J (2001) Cladribine induces apoptosis in human leukaemia cells by caspase-dependent and -independent pathways acting on mitochondria. Biochem J 359:537–546

    Article  PubMed  CAS  Google Scholar 

  • Napoli I, Neumann H (2009a) Protective effects of microglia in multiple sclerosis. Exp Neurol 225:24–28

    Article  PubMed  Google Scholar 

  • Napoli I, Neumann H (2009b) Microglial clearance function in health and disease. Neuroscience 158:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  PubMed  CAS  Google Scholar 

  • Nielsen HH, Ladeby R, Fenger C, Toft-Hansen H, Babcock AA, Owens T, Finsen B (2009) Enhanced microglial clearance of myelin debris in T cell-infiltrated central nervous system. J Neuropathol Exp Neurol 68:845–856

    Article  PubMed  CAS  Google Scholar 

  • Niezgoda A, Losy J, Mehta PD (2001) Effect of cladribine treatment on beta-2 microglobulin and soluble intercellular adhesion molecule 1 (ICAM-1) in patients with multiple sclerosis. Folia Morphol (Warsz) 60:225–228

    CAS  Google Scholar 

  • Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT (2010) Anti-apoptosis and cell survival: a review. Biochim Biophys Acta 1813:238–259

    Article  PubMed  Google Scholar 

  • Pul R, Moharregh-Khiabani D, Skuljec J, Skripuletz T, Garde N, Voss EV, Stangel M (2011) Glatiramer acetate modulates TNF-alpha and IL-10 secretion in microglia and promotes their phagocytic activity. J Neuroimmune Pharmacol 6:381–388

    Article  PubMed  Google Scholar 

  • Ratchford JN, Endres CJ, Hammond DA, Pomper MG, Shiee N, McGready J, Pham DL, Calabresi PA (2012) Decreased mitochondrial activation in MS patients treated with glatiramer acetate. J Neurol 259:1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458-1461

    Google Scholar 

  • Rice GP, Filippi M, Comi G (2000) A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis: clinical and MRI outcomes of a multicenter controlled trial. Cladribine MRI Study Group. Neurology 54:1145–1155

    Article  PubMed  CAS  Google Scholar 

  • Seto S, Carrera CJ, Kubota M, Wasson DB, Carson DA (1985) Mechanism of deoxyadenosine and 2-chlorodeoxyadenosine toxicity to nondividing human lymphocytes. J Clin Invest 75:377–383

    Article  PubMed  CAS  Google Scholar 

  • Sipe JC (2005) Cladribine for multiple sclerosis: review and current status. Expert Rev Neurother 5:721–727

    Article  PubMed  CAS  Google Scholar 

  • Stangel M, Joly E, Scolding NJ, Compston DA (2000) Normal polyclonal immunoglobulins (‘IVIg’) inhibit microglial phagocytosis in vitro. J Neuroimmunol 106:137–144

    Article  PubMed  CAS  Google Scholar 

  • Szczucinski A, Losy J (2007) Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol Scand 115:137–146

    Article  PubMed  CAS  Google Scholar 

  • Szondy Z (1995) The 2-chlorodeoxyadenosine-induced cell death signalling pathway in human thymocytes is different from that induced by 2-chloroadenosine. Biochem J 311(Pt 2):585–588

    PubMed  CAS  Google Scholar 

  • Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  PubMed  CAS  Google Scholar 

  • Van Den Neste E, Cardoen S, Husson B, Rosier JF, Delacauw A, Ferrant A, Van den Berghe G, Bontemps F (2002) 2-Chloro-2′-deoxyadenosine inhibits DNA repair synthesis and potentiates UVC cytotoxicity in chronic lymphocytic leukemia B lymphocytes. Leukemia 16:36–43

    Article  Google Scholar 

  • Van den Neste E, Cardoen S, Offner F, Bontemps F (2005) Old and new insights into the mechanisms of action of two nucleoside analogs active in lymphoid malignancies: fludarabine and cladribine (review). Int J Oncol 27:1113–1124

    PubMed  Google Scholar 

  • Voss EV, Skuljec J, Gudi V, Skripuletz T, Pul R, Trebst C, Stangel M (2012) Characterisation of microglia during de- and remyelination: Can they create a repair promoting environment? Neurobiol Dis 45:519–528

    Article  PubMed  CAS  Google Scholar 

  • Walter L, Neumann H (2009) Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol 31:513–525

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ilona Cierpka-Leja and Andreas Niesel for their technical assistance and Dr. Prajeeth Chittappen for his many helpful comments on the manuscript. This research work was supported by Merck Serono GmbH. The sponsor was not involved in data collection or analysis, drafting the manuscript, or decision to publish.

Conflict of interest

This research work was supported partly by Merck Serono GmbH. The sponsor was not involved in data collection or analysis, drafting the manuscript, or decision to publish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stangel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V., Voss, E.V., Bénardais, K. et al. Effects of 2-Chlorodeoxyadenosine (Cladribine) on Primary Rat Microglia. J Neuroimmune Pharmacol 7, 939–950 (2012). https://doi.org/10.1007/s11481-012-9387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-012-9387-7

Keywords

Navigation