Skip to main content

Advertisement

Log in

Adverse Stress, Hippocampal Networks, and Alzheimer’s Disease

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Recent clinical data have implicated chronic adverse stress as a potential risk factor in the development of Alzheimer’s disease (AD) and data also suggest that normal, physiological stress responses may be impaired in AD. It is possible that pathology associated with AD causes aberrant responses to chronic stress, due to potential alterations in the hypothalamic–pituitary–adrenal (HPA) axis. Recent study in rodent models of AD suggests that chronic adverse stress exacerbates the cognitive deficits and hippocampal pathology that are present in the AD brain. This review summarizes recent findings obtained in experimental AD models regarding the influence of chronic adverse stress on the underlying cellular and molecular disease processes including the potential role of glucocorticoids. Emerging findings suggest that both AD and chronic adverse stress affect hippocampal neural networks in a similar fashion. We describe alterations in hippocampal plasticity, which occur in both chronic stress and AD including dendritic remodeling, neurogenesis, and long-term potentiation. Finally, we outline potential roles for oxidative stress and neurotrophic factor signaling as the key determinants of the impact of chronic stress on the plasticity of neural networks and AD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aisa, B., Elizalde, N., Tordera, R., Lasheras, B., Del Río, J., & Ramírez, M. J. (2009). Effects of neonatal stress on markers of synaptic plasticity in the hippocampus: Implications for spatial memory. Hippocampus (in press).

  • Aleisa, A. M., Alzoubi, K. H., Gerges, N. Z., & Alkadhi, K. A. (2006). Chronic psychosocial stress-induced impairment of hippocampal LTP: Possible role of BDNF. Neurobiology of Diseases, 22, 453–462.

    Article  CAS  Google Scholar 

  • Alfarez, D. N., Joëls, M., & Krugers, H. J. (2003). Chronic unpredictable stress impairs long-term potentiation in rat hippocampal CA1 area and dentate gyrus in vitro. European Journal of Neuroscience, 17, 1928–1934.

    Article  PubMed  Google Scholar 

  • Alfarez, D. N., Weigert, O., Joëls, M., & Krugers, H. J. (2002). Corticosterone and stress reduce synaptic potentiation in mouse hippocampal slices with mild stimulation. Neuroscience, 115, 1119–1126.

    Article  CAS  PubMed  Google Scholar 

  • Atif, F., Yousuf, S., & Agrawal, S. K. (2008). Restraint stress-induced oxidative damage and its amelioration with selenium. European Journal of Pharmacology, 600, 59–63.

    Article  CAS  PubMed  Google Scholar 

  • Begley, J. G., Duan, W., Chan, S., Duff, K., & Mattson, M. P. (1999). Altered calcium homeostasis and mitochondrial dysfunction in cortical synaptic compartments of presenilin-1 mutant mice. Journal of Neurochemistry, 72, 1030–1039.

    Article  CAS  PubMed  Google Scholar 

  • Bobinski, M., de Leon, M. J., Tarnawski, M., Wegiel, J., Reisberg, B., Miller, D. C., et al. (1998). Neuronal and volume loss in CA1 of the hippocampal formation uniquely predicts duration and severity of Alzheimer disease. Brain Research, 805, 267–269.

    Article  CAS  PubMed  Google Scholar 

  • Bohringer, A., Schwabe, L., Richter, S., & Schachinger, H. (2008). Intranasal insulin attenuates the hypothalamic-pituitary-adrenal axis response to psychosocial stress. Psychoneuroendocrinology, 33, 1394–1400.

    Article  CAS  PubMed  Google Scholar 

  • Breyhan, H., Wirths, O., Duan, K., Marcello, A., Rettig, J., & Bayer, T. A. (2009). APP/PS1KI bigenic mice develop early synaptic deficits and hippocampus atrophy. Acta Neuropathologica, 117, 677–685.

    Article  PubMed  Google Scholar 

  • Bruce-Keller, A. J., Umberger, G., McFall, R., & Mattson, M. P. (1999). Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Annals of Neurology, 45, 8–15.

    Article  CAS  PubMed  Google Scholar 

  • Bubber, P., Haroutunian, V., Fisch, G., Blass, J. P., & Gibson, G. E. (2005). Mitochondrial abnormalities in Alzheimer brain: Mechanistic implications. Annals of Neurology, 57, 695–703.

    Article  CAS  PubMed  Google Scholar 

  • Butterfield, D. A., & Boyd-Kimball, D. (2004). Amyloid beta-peptide(1-42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathology, 14, 426–432.

    CAS  PubMed  Google Scholar 

  • Butterfield, D. A., Drake, J., Pocernich, C., & Castegna, A. (2001). Evidence of oxidative damage in Alzheimer’s disease brain: Central role for amyloid beta-peptide. Trends in Molecular Medicine, 7, 548–554.

    Article  CAS  PubMed  Google Scholar 

  • Buttini, M., Masliah, E., Barbour, R., Grajeda, H., Motter, R., Johnson-Wood, K., et al. (2005). Beta-amyloid immunotherapy prevents synaptic degeneration in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 25, 9096–9101.

    Article  CAS  PubMed  Google Scholar 

  • Cameron, H. A., Woolley, C. S., McEwen, B. S., & Gould, E. (1993). Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience, 56, 337–344.

    Article  CAS  PubMed  Google Scholar 

  • Casas, C., Sergeant, N., Itier, J. M., Blanchard, V., Wirths, O., van der Kolk, N., et al. (2004). Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. American Journal of Pathology, 165, 1289–1300.

    CAS  PubMed  Google Scholar 

  • Catania, C., Sotiropoulos, I., Silva, R., Onofri, C., Breen, K. C., Sousa, N., et al. (2009). The amyloidogenic potential and behavioral correlates of stress. Molecular Psychiatry, 14, 95–105.

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira, J. J., Mailliet, F., Almeida, O. F., Jay, T. M., & Sousa, N. (2007). The prefrontal cortex as a key target of the maladaptive response to stress. Journal of Neuroscience, 27, 2781–2787.

    Article  CAS  PubMed  Google Scholar 

  • Connor, B., Young, D., Yan, Q., Faull, R. L., Synek, B., & Dragunow, M. (1997). Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Brain Research. Molecular Brain Research, 49, 71–81.

    Article  CAS  PubMed  Google Scholar 

  • Conrad, C. D., Lupien, S. J., & McEwen, B. S. (1999). Support for a bimodal role for type II adrenal steroid receptors in spatial memory. Neurobiology of Learning and Memory, 72, 39–46.

    Article  CAS  PubMed  Google Scholar 

  • Craft, S. (2009). The role of metabolic disorders in Alzheimer disease and vascular dementia: Two roads converged. Archives of Neurology, 66, 300–305.

    Article  PubMed  Google Scholar 

  • Csernansky, J. G., Dong, H., Fagan, A. M., Wang, L., Xiong, C., Holtzman, D. M., et al. (2006). Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. American Journal of Psychiatry, 163, 2164–2169.

    Article  PubMed  Google Scholar 

  • Czéh, B., Welt, T., Fischer, A. K., Erhardt, A., Schmitt, W., Müller, M. B., et al. (2003). Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: Effects on stress hormone levels and adult hippocampal neurogenesis. Biological Psychiatry, 52, 1057–1065.

    Article  Google Scholar 

  • Dallman, M. F., Akana, S. F., Strack, A. M., Hanson, E. S., & Sebastian, R. J. (1995). The neural network that regulates energy balance is responsive to glucocorticoids and insulin and also regulates HPA axis responsivity at a site proximal to CRF neurons. Annals of the New York Academy of Sciences, 771, 730–742.

    Article  CAS  PubMed  Google Scholar 

  • David, D. J., Samuels, B. A., Rainer, Q., Wang, J. W., Marsteller, D., Mendez, I., et al. (2009). Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron, 62, 479–493.

    Article  CAS  PubMed  Google Scholar 

  • Davis, K. L., Davis, B. M., Greenwald, B. S., Mohs, R. C., Mathe, A. A., Johns, C. A., et al. (1986). Cortisol and Alzheimer’s disease, I: Basal studies. The American Journal of Psychiatry, 143, 300–305.

    CAS  PubMed  Google Scholar 

  • de Kloet, E. R., & Derijk, R. (2004). Signaling pathways in brain involved in predisposition and pathogenesis of stress-related disease: Genetic and kinetic factors affecting the MR/GR balance. Annals of the New York Academy of Sciences, 1032, 14–34.

    Article  PubMed  CAS  Google Scholar 

  • de Kloet, E. R., Oitzl, M. S., & Joëls, M. (1999). Stress and cognition: Are corticosteroids good or bad guys? Trends in Neurosciences, 22, 422–426.

    Article  PubMed  Google Scholar 

  • Diamond, D. M., Bennett, M. C., Fleshner, M., & Rose, G. M. (1992). Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus, 2, 421–430.

    Article  CAS  PubMed  Google Scholar 

  • Dong, H., Goico, B., Martin, M., Csernansky, C. A., Bertchume, A., & Csernansky, J. G. (2004). Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience, 127, 601–609.

    Article  CAS  PubMed  Google Scholar 

  • Dong, H., Yuede, C. M., Yoo, H. S., Martin, M. V., Deal, C., Mace, A. G., et al. (2008). Corticosterone and related receptor expression are associated with increased β-amyloid plaques in isolated Tg2576 mice. Neuroscience, 155, 154–163.

    Article  CAS  PubMed  Google Scholar 

  • Donohue, H. S., Gabbott, P. L., Davies, H. A., Rodríguez, J. J., Cordero, M. I., Sandi, C., et al. (2006). Chronic restraint stress induces changes in synapse morphology in stratum lacunosum-moleculare CA1 rat hippocampus: A stereological and three-dimensional ultrastructural study. Neuroscience, 140, 597–606.

    Article  CAS  PubMed  Google Scholar 

  • Droste, S. K., Collins. A., Lightman, S. L., Linthorst. A. C., & Reul, J. M. (2009). Distinct, time-dependent effects of voluntary exercise on circadian and ultradian rhythms and stress responses of free corticosterone in the rat hippocampus. Endocrinology, 150(9), 4170–4179.

    Google Scholar 

  • Du, J., Wang, Y., Hunter, R., Wei, Y., Blumenthal, R., Falke, C., et al. (2009). Dynamic regulation of mitochondrial function by glucocorticoids. Proceedings of the National Academy of Sciences of the United States of America, 106, 3543–3548.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., et al. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 1313–1317.

    Article  CAS  PubMed  Google Scholar 

  • Friedland, R. P., Jagust, W. J., Huesman, R. H., Koss, E., Knittel, B., Mathis, C. A., et al. (1989). Regional cerebral glucose transport and utilization in Alzheimer’s disease. Neurology, 39, 1427–1434.

    CAS  PubMed  Google Scholar 

  • Fu, J. H., Xie, S. R., Kong, S. J., Wang, Y., Wei, W., Shan, Y., et al. (2009). The combination of a high-fat diet and chronic stress aggravates insulin resistance in Wistar male rats. Experimental and Clinical Endocrinology & Diabetes, 117(7), 354–360.

    Google Scholar 

  • Fuchs, E., & Flugge, G. (1998). Stress, glucocorticoids and structural plasticity of the hippocampus. Neuroscience and Biobehavioral Reviews, 23, 295–300.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs, E., Flugge, G., & Czeh, B. (2006). Remodeling of neural networks by stress. Frontiers Bioscience, 11, 2746–2758.

    Article  CAS  Google Scholar 

  • Fumagalli, F., Di Pasquale, L., Caffino, L., Racagni, G., & Riva, M. A. (2008). Stress and cocaine interact to modulate basic fibroblast growth factor (FGF-2) expression in rat brain. Psychopharmacology, 196, 357–364.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Pinilla, F., Dao, L., & So, V. (1997). Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Research, 764, 1–8.

    Article  PubMed  Google Scholar 

  • Gomez-Pinilla, F., Vaynman, S., & Ying, Z. (2008). Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. European Journal of Neuroscience, 28, 2278–2287.

    Article  PubMed  Google Scholar 

  • Gong, Y., Chang, L., Viola, K. L., Lacor, P. N., Lambert, M. P., Finch, C. E., et al. (2003). Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proceedings of the National Academy of Sciences of the United States of America, 100, 10417–10422.

    Article  CAS  PubMed  Google Scholar 

  • Goodman, Y., Bruce, A. J., Cheng, B., & Mattson, M. P. (1996). Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons. Journal of Neurochemistry, 66, 1836–1844.

    Article  CAS  PubMed  Google Scholar 

  • Goodman, Y., & Mattson, M. P. (1994). Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Experimental Neurology, 128, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Gould, E., McEwen, B. S., Tanapat, P., Galea, L. A., & Fuchs, E. (1997). Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. Journal of Neuroscience, 17, 2492–2498.

    CAS  PubMed  Google Scholar 

  • Graves, L. A., Heller, E. A., Pack, A. I., & Abel, T. (2003). Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learning and Memory, 10, 168–176.

    Article  PubMed  Google Scholar 

  • Green, K. N., Billings, L. M., Roozendaal, B., McGaugh, J. L., & LaFerla, F. M. (2006). Glucocorticoids increase amyloid-β and tau pathology in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 26, 9047–9056.

    Article  CAS  PubMed  Google Scholar 

  • Hajszan, T., Dow, A., Warner-Schmidt, J. L., Szigeti-Buck, K., Sallam, N. L., Parducz, A., et al. (2009). Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression. Biological Psychiatry, 65, 392–400.

    Article  PubMed  Google Scholar 

  • Haughey, N. J., Nath, A., Chan, S. L., Borchard, A. C., Rao, M. S., & Mattson, M. P. (2002). Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. Journal of Neurochemistry, 83, 1509–1524.

    Article  CAS  PubMed  Google Scholar 

  • Hauptmann, S., Scherping, I., Dröse, S., Brandt, U., Schulz, K. L., Jendrach, M., et al. (2008). Mitochondrial dysfunction: An early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiology of Aging, 30(10), 1574–1586.

    Google Scholar 

  • Henneman, W. J., Sluimer, J. D., Barnes, J., van der Flier, W. M., Sluimer, I. C., Fox, N. C., et al. (2009). Hippocampal atrophy rates in Alzheimer disease: Added value over whole brain volume measures. Neurology, 72, 999–1007.

    Article  CAS  PubMed  Google Scholar 

  • Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., Wu, J. F., et al. (1994). A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 91, 3270–3274.

    Article  CAS  PubMed  Google Scholar 

  • Herman, J. P., Schäfer, M. K., Young, E. A., Thompson, R., Douglass, J., Akil, H., et al. (1989). Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. Journal of Neuroscience, 9, 3072–3082.

    CAS  PubMed  Google Scholar 

  • Hock, C., Heese, K., Hulette, C., Rosenberg, C., & Otten, U. (2000). Region-specific neurotrophin imbalances in Alzheimer disease: Decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Archives of Neurology, 57, 846–851.

    Article  CAS  PubMed  Google Scholar 

  • Holderbach, R., Clark, K., Moreau, J. L., Bischofberger, J., & Normann, C. (2007). Enhanced long-term synaptic depression in an animal model of depression. Biological Psychiatry, 62, 92–100.

    Article  PubMed  Google Scholar 

  • Horner, H. C., Packan, D. R., & Sapolsky, R. M. (1990). Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia. Neuroendocrinology, 52, 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Ibi, D., Takuma, K., Koike, H., Mizoguchi, H., Tsuritani, K., Kuwahara, Y., et al. (2008). Social isolation rearing-induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. Journal of Neurochemistry, 105, 921–932.

    Article  CAS  PubMed  Google Scholar 

  • Imayoshi, I., Sakamoto, M., Ohtsuka, T., & Kageyama, R. (2009). Continuous neurogenesis in the adult brain. Development Growth and Differentiation, 51, 379–386.

    Article  Google Scholar 

  • Irie, K., Murakami, K., Masuda, Y., Morimoto, A., Ohigashi, H., Hara, H., et al. (2007). The toxic conformation of the 42-residue amyloid beta peptide and its relevance to oxidative stress in Alzheimer’s disease. Mini Reviews in Medicinal Chemistry, 7, 1001–1008.

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen, J. S., Wu, C. C., Redwine, J. M., Comery, T. A., Arias, R., Bowlby, M., et al. (2006). Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 103, 5161–5166.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson, L., & Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocrine Reviews, 12, 118–134.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, Y. H., Park, C. H., Yoo, J., Shin, K. J., Ahn, S. M., Kim, H. S., et al. (2006). Chronic stress accelerates learning and memory impairments and increases amyloid deposition in APPV7171-CT100 transgenic mice, an Alzheimer’s disease model. The FASEB Journal, 20, 729–731.

    CAS  PubMed  Google Scholar 

  • Jin, K., Peel, A. L., Mao, X. O., Xie, L., Cottrell, B. A., Henshall, D. C., et al. (2004). Increased hippocampal neurogenesis in Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 343–347.

    Article  CAS  PubMed  Google Scholar 

  • Joëls, M., & Krugers, H. J. (2007). LTP after stress: Up or down? Neural Plasticity, 2007, 93202.

    Article  PubMed  Google Scholar 

  • Johnson, N. A., Jahng, G. H., Weiner, M. W., Miller, B. L., Chui, H. C., Jagust, W. J., et al. (2005). Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: Initial experience. Radiology, 234, 851–859.

    Article  PubMed  Google Scholar 

  • Keller, J. N., Mark, R. J., Bruce, A. J., Blanc, E., Rothstein, J. D., Uchida, K., et al. (1997). 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience, 80, 685–696.

    Article  CAS  PubMed  Google Scholar 

  • Kempermann, G., Gast, D., & Gage, F. H. (2002). Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Annals of Neurology, 52, 135–143.

    Article  PubMed  Google Scholar 

  • Krugers, H. J., Douma, B. R., Andringa, G., Bohus, B., Korf, J., & Luiten, P. G. (1997). Exposure to chronic psychosocial stress and corticosterone in the rat: Effects on spatial discrimination learning and hippocampal protein kinase Cgamma immunoreactivity. Hippocampus, 7, 427–436.

    Article  CAS  PubMed  Google Scholar 

  • Kulstad, J. J., McMillan, P. J., Leverenz, J. B., Cook, D. G., Green, P. S., Peskind, E. R., et al. (2005). Effects of chronic glucocorticoid administration on insulin-degrading enzyme and amyloid-beta peptide in the aged macaque. Journal of Neuropathology and Experimental Neurology, 64, 139–146.

    CAS  PubMed  Google Scholar 

  • Lacor, P. N., Buniel, M. C., Chang, L., Fernandez, S. J., Gong, Y., Viola, K. L., et al. (2004). Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. Journal of Neuroscience, 24, 10191–10200.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Duan, W., & Mattson, M. P. (2002a). Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. Journal of Neurochemistry, 82, 1367–1375.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Herman, J. P., & Mattson, M. P. (2000). Dietary restriction selectively decreases glucocorticoid receptor expression in the hippocampus and cerebral cortex of rats. Experimental Neurology, 166, 435–441.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. W., Kim, J. B., Seo, J. S., Kim, T. K., Im, J. Y., Baek, I. S., et al. (2009). Behavioral stress accelerates plaque pathogenesis in the brain of Tg2576 mice via generation of metabolic oxidative stress. Journal of Neurochemistry, 108, 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Seroogy, K. B., & Mattson, M. P. (2002b). Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. Journal of Neurochemistry, 80, 539–547.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Perry, T., Kindy, M. S., Harvey, B. K., Tweedie, D., Holloway, H. W., et al. (2009). GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 106, 1285–1290.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Wang, C., Wang, W., Dong, H., Hou, P., & Tang, Y. (2008). Chronic mild stress impairs cognition in mice: From brain homeostasis to behavior. Life Sciences, 82, 934–942.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., Orozco, I. J., Planel, E., Wen, Y., Bretteville, A., Krishnamurthy, P., et al. (2008). A transgenic rat that develops Alzheimer’s disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiology of Diseases, 31, 46–57.

    Article  CAS  Google Scholar 

  • Löckenhoff, C. E., Terracciano, A., Patriciu, N. S., Eaton, W. W., & Costa, P. T., Jr. (2009). Self-reported extremely adverse life events and longitudinal changes in five-factor model personality traits in an urban sample. Journal of Traumatic Stress, 22, 53–59.

    Article  PubMed  Google Scholar 

  • Lucassen, P. J., Heine, V. M., Muller, M. B., van der Beek, E. M., Wiegant, V. M., De Kloet, E. R., et al. (2006). Stress, depression and hippocampal apoptosis. CNS & Neurological Disorders Drug Targets, 5, 531–546.

    Article  Google Scholar 

  • Magariños, A. M., McEwen, B. S., Flügge, G., & Fuchs, E. (1996). Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. Journal of Neuroscience, 16, 3534–3540.

    PubMed  Google Scholar 

  • Magariños, A. M., Orchinik, M., & McEwen, B. S. (1998). Morphological changes in the hippocampal CA3 region induced by non-invasive glucocorticoid administration: A paradox. Brain Research, 809, 314–318.

    Article  PubMed  Google Scholar 

  • Malberg, J. E., & Duman, R. S. (2003). Cell proliferation in adult hippocampus is decreased by inescapable stress: Reversal by fluoxetine treatment. Neuropsychopharmacology, 28, 1562–1571.

    Article  CAS  PubMed  Google Scholar 

  • Marini, A. M., Jiang, X., Wu, X., Pan, H., Guo, Z., Mattson, M. P., et al. (2007). Preconditioning and neurotrophins: A model for brain adaptation to seizures, ischemia and other stressful stimuli. Amino Acids, 32, 299–304.

    Article  CAS  PubMed  Google Scholar 

  • Mark, R. J., Pang, Z., Geddes, J. W., Uchida, K., & Mattson, M. P. (1997). Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: Involvement of membrane lipid peroxidation. Journal of Neuroscience, 17, 1046–1054.

    CAS  PubMed  Google Scholar 

  • Martin, S. J., & Clark, R. E. (2007). The rodent hippocampus and spatial memory: From synapses to systems. Cellular and Molecular Life Sciences, 64, 401–431.

    Article  CAS  PubMed  Google Scholar 

  • Martin, B., Golden, E., Carlson, O. D., Pistell, P., Zhou, J., Kim, W., et al. (2009). Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington’s disease. Diabetes, 58, 318–328.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka, Y., Picciano, M., La Francois, J., & Duff, K. (2001). Fibrillar beta-amyloid evokes oxidative damage in a transgenic mouse model of Alzheimer’s disease. Neuroscience, 104, 609–613.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, M. P. (2004). Pathways towards and away from Alzheimer’s disease. Nature, 430, 631–639.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, M. P. (2008). Awareness of hormesis will enhance future research in basic and applied neuroscience. Critical Reviews in Toxicology, 38, 633–639.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, M. P., Duan, W., Wan, R., & Guo, Z. (2004). Prophylactic activation of neuroprotective stress response pathways by dietary and behavioral manipulations. NeuroRx, 1, 111–116.

    Article  PubMed  Google Scholar 

  • Mattson, M. P., Gleichmann, M., & Cheng, A. (2008). Mitochondria in neuroplasticity and neurological disorders. Neuron, 60, 748–766.

    Article  CAS  PubMed  Google Scholar 

  • McEwen, B. S. (2001). Plasticity of the hippocampus: Adaptation to chronic stress and allostatic load. Annals of the New York Academy of Sciences, 933, 265–277.

    CAS  PubMed  Google Scholar 

  • McEwen, B. S. (2006). Protective and damaging effects of stress mediators: Central role of the brain. Dialogues in Clinical Neuroscience, 8, 367–381.

    PubMed  Google Scholar 

  • Mejia, S., Giraldo, M., Pineda, D., Ardila, A., & Lopera, F. (2003). Nongenetic factors as modifiers of the age of onset of familial alzheimer’s disease. International Psychogeriatrics, 15, 337–349.

    Article  PubMed  Google Scholar 

  • Mowla, A., Mosavinasab, M., & Pani, A. (2007). Does fluoxetine have any effect on the cognition of patients with mild cognitive impairment? A double-blind, placebo-controlled, clinical trial. Journal of Clinical Psychopharmacology, 27, 67–70.

    Article  CAS  PubMed  Google Scholar 

  • Munck, A., & Guyre, P. M. (1986). Glucocorticoid physiology, pharmacology and stress. Advances in Experimental Medicine and Biology, 196, 81–96.

    CAS  PubMed  Google Scholar 

  • Nagahara, A. H., Merrill, D. A., Coppola, G., Tsukada, S., Schroder, B. E., Shaked, G. M., et al. (2009). Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nature Medicine, 15, 331–337.

    Article  CAS  PubMed  Google Scholar 

  • Nakajo, Y., Miyamoto, S., Nakano, Y., Xue, J. H., Hori, T., & Yanamoto, H. (2008). Genetic increase in brain-derived neurotrophic factor levels enhances learning and memory. Brain Research, 1241, 103–109.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, D. H. (1972). Regulation of glucocorticoid release. American Journal of Medicine, 53, 590–594.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, R. L., Guo, Z., Halagappa, V. M., Pearson, M., Gray, A. J., Matsuoka, Y., et al. (2007). Prophylactic treatment with paroxetine ameliorates behavioral deficits and retards the development of amyloid and tau pathologies in 3xTgAD mice. Experimental Neurology, 205, 166–176.

    Article  CAS  PubMed  Google Scholar 

  • Nishi, M., Usuku, T., Itose, M., Fujikawa, K., Hosokawa, K., Matsuda, K. I., et al. (2007). Direct visualization of glucocorticoid receptor positive cells in the hippocampal regions using green fluorescent protein transgenic mice. Neuroscience, 146, 1555–1560.

    Article  CAS  PubMed  Google Scholar 

  • Nuntagij, P., Oddo, S., LaFerla, F. M., Kotchabhakdi, N., Ottersen, O. P., & Torp, R. (2009). Amyloid deposits show complexity and intimate spatial relationship with dendrosomatic plasma membranes: an electron microscopic 3D reconstruction analysis in 3xTg-AD mice and aged canines. Journal of Alzheimer’s Disease, 16, 315–323.

    CAS  PubMed  Google Scholar 

  • Pajović, S. B., Pejić, S., Stojiljković, V., Gavrilović, L., Dronjak, S., & Kanazir, D. T. (2006). Alterations in hippocampal antioxidant enzyme activities and sympatho-adrenomedullary system of rats in response to different stress models. Physiological Research, 55, 453–460.

    PubMed  Google Scholar 

  • Pan, J. W., & Takahashi, K. (2007). Cerebral energetic effects of creatine supplementation in humans. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 292, R1745–R1750.

    CAS  PubMed  Google Scholar 

  • Park, C. R., Campbell, A. M., & Diamond, D. M. (2001). Chronic psychosocial stress impairs learning and memory and increases sensitivity to yohimbine in adult rats. Biological Psychiatry, 50, 994–1004.

    Article  CAS  PubMed  Google Scholar 

  • Patel, N. V., & Finch, C. E. (2002). The glucocorticoid paradox of caloric restriction in slowing brain aging. Neurobiology of Aging, 23, 707–717.

    Article  CAS  PubMed  Google Scholar 

  • Patel, P. D., Katz, M., Karssen, A. M., & Lyons, D. M. (2008). Stress-induced changes in corticosteroid receptor expression in primate hippocampus and prefrontal cortex. Psychoneuroendocrinology, 33, 360–367.

    Article  CAS  PubMed  Google Scholar 

  • Pavlides, C., Nivón, L. G., & McEwen, B. S. (2002). Effects of chronic stress on hippocampal long-term potentiation. Hippocampus, 12, 245–257.

    Article  PubMed  Google Scholar 

  • Pedersen, W. A., Culmsee, C., Ziegler, D., Herman, J. P., & Mattson, M. P. (1999). Aberrant stress response associated with severe hypoglycemia in a transgenic mouse model of Alzheimer’s disease. Journal of Molecular Neuroscience, 13, 159–165.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, W. A., McMillan, P. J., Kulstad, J. J., Leverenz, J. B., Craft, S., & Haynatzki, G. R. (2006). Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Experimental Neurology, 199, 265–273.

    Article  CAS  PubMed  Google Scholar 

  • Perneczky, R., Hartmann, J., Grimmer, T., Drzezga, A., & Kurz, A. (2007). Cerebral metabolic correlates of the clinical dementia rating scale in mild cognitive impairment. Journal of Geriatric Psychiatry and Neurology, 20, 84–88.

    Article  PubMed  Google Scholar 

  • Pietropaolo, S., Sun, Y., Li, R., Brana, C., Feldon, J., & Yee, B. K. (2009). Limited impact of social isolation on Alzheimer-like symptoms in a triple transgenic mouse model. Behavioral Neuroscience, 123, 181–195.

    Article  PubMed  Google Scholar 

  • Radák, Z., Kaneko, T., Tahara, S., Nakamoto, H., Pucsok, J., Sasvári, M., et al. (2001). Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochemistry International, 38, 17–23.

    Article  PubMed  Google Scholar 

  • Rasmuson, S., Andrew, R., Näsman, B., Seckl, J. R., Walker, B. R., & Olsson, T. (2001). Increased glucocorticoid production and altered cortisol metabolism in women with mild to moderate Alzheimer’s disease. Biological Psychiatry, 49, 547–552.

    Article  CAS  PubMed  Google Scholar 

  • Raymond, C. R. (2007). LTP forms 1, 2 and 3: Different mechanisms for the “long” in long-term potentiation. Trends in Neurosciences, 30, 167–175.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, P. H., & Beal, M. F. (2008). Amyloid beta, mitochondrial dysfunction and synaptic damage: Implications for cognitive decline in aging and Alzheimer’s disease. Trends in Molecular Medicine, 14, 45–53.

    Article  CAS  PubMed  Google Scholar 

  • Reul, J. M., & de Kloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology, 117, 2505–2511.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez, J. J., Jones, V. C., Tabuchi, M., Allan, S. M., Knight, E. M., LaFerla, F. M., et al. (2008). Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS One, 3(8):e2935.

    Google Scholar 

  • Romeo, R. D., Ali, F. S., Karatsoreos, I. N., Bellani, R., Chhua, N., Vernov, M., et al. (2008). Glucocorticoid receptor mRNA expression in the hippocampal formation of male rats before and after pubertal development in response to acute or repeated stress. Neuroendocrinology, 87, 160–167.

    Article  CAS  PubMed  Google Scholar 

  • Roozendaal, B., Phillips, R. G., Power, A. E., Brooke, S. M., Sapolsky, R. M., & McGaugh, J. L. (2001). Memory retrival impairment induced by hippocampal CA3 lesions is blocked by adrenocortical suppression. Nature Neuroscience, 4, 1169–1171.

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky, R. M. (1986). Glucocorticoid toxicity in the hippocampus: Reversal by supplementation with brain fuels. Journal of Neuroscience, 6, 2240–2244.

    CAS  PubMed  Google Scholar 

  • Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1986). The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocrine Reviews, 7, 284–301.

    Article  CAS  PubMed  Google Scholar 

  • Saxe, M. D., Battaglia, F., Wang, J. W., Malleret, G., David, D. J., Monckton, J. E., et al. (2006). Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 103, 17501–17506.

    Article  CAS  PubMed  Google Scholar 

  • Sayer, R., Robertson, D., Balfour, D. J., Breen, K. C., & Stewart, C. A. (2008). The effect of stress on the expression of the amyloid precursor protein in rat brain. Neuroscience Letters, 431, 197–200.

    Article  CAS  PubMed  Google Scholar 

  • Scheff, S. W., Price, D. A., Schmitt, F. A., DeKosky, S. T., & Mufson, E. J. (2007). Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology, 68, 1501–1508.

    Article  CAS  PubMed  Google Scholar 

  • Scheff, S. W., Price, D. A., Schmitt, F. A., & Mufson, E. J. (2006). Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 27, 1372–1384.

    Article  CAS  PubMed  Google Scholar 

  • Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298, 789–791.

    Article  CAS  PubMed  Google Scholar 

  • Selkoe, D. J. (2008). Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behavioural Brain Research, 192, 106–113.

    Article  CAS  PubMed  Google Scholar 

  • Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I., et al. (2008). Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature Medicine, 14, 837–842.

    Article  CAS  PubMed  Google Scholar 

  • Shao, C., Xiong, S., Li, G. M., Gu, L., Mao, G., Markesbery, W. R., et al. (2008). Altered 8-oxoguanine glycosylase in mild cognitive impairment and late-stage Alzheimer’s disease brain. Free Radical Biology and Medicine, 45, 813–819.

    Article  CAS  PubMed  Google Scholar 

  • Sheline, Y. I., Gado, M. H., & Kraemer, H. C. (2003). Untreated depression and hippocampal volume loss. American Journal of Psychiatry, 160, 1516–1518.

    Article  PubMed  Google Scholar 

  • Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G., & Vannier, M. W. (1996). Hippocampal atrophy in recurrent major depression. Proceedings of the National Academy of Sciences of the United States of America, 93, 3908–3913.

    Article  CAS  PubMed  Google Scholar 

  • Sheng, M., & Kim, M. J. (2002). Postsynaptic signaling and plasticity mechanisms. Science, 298, 776–780.

    Article  CAS  PubMed  Google Scholar 

  • Shors, T. J., Seib, T. B., Levine, S., & Thompson, R. F. (1989). Inescapable versus escapable foot shock modulates long-term potentiation in the rat hippocampus. Science, 244, 224–226.

    Article  CAS  PubMed  Google Scholar 

  • Simon, M., Czéh, B., & Fuchs, E. (2005). Age-dependent susceptibility of adult hippocampal cell proliferation to chronic psychosocial stress. Brain Research, 1049, 244–248.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., & Kumar, A. (2008). Protective effect of alprazolam against sleep deprivation-induced behavior alterations and oxidative damage in mice. Neuroscience Research, 60, 372–379.

    Article  CAS  PubMed  Google Scholar 

  • Smith, C., & Kelly, G. (1988). Paradoxical sleep deprivation applied two days after end of training retards learning. Physiology & Behavior, 43, 213–216.

    Article  CAS  Google Scholar 

  • Smith, M. A., Makino, S., Kvetnansky, R., & Post, R. M. (1995). Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. Journal of Neuroscience, 15, 1768–1777.

    CAS  PubMed  Google Scholar 

  • Smith-Swintosky, V. L., Pettigrew, L. C., Sapolsky, R. M., Phares, C., Craddock, S. D., Brooke, S. M., et al. (1996). Metyrapone, an inhibitor of glucocorticoid production, reduces brain injury induced by focal and global ischemia and seizures. Journal of Cerebral Blood Flow and Metabolism, 16, 585–598.

    CAS  PubMed  Google Scholar 

  • Snyder, J. S., Hong, N. S., McDonald, R. J., & Wojtowicz, J. M. (2005). A role for adult neurogenesis in spatial long-term memory. Neuroscience, 130, 843–852.

    Article  CAS  PubMed  Google Scholar 

  • Sotiropoulos, I., Cerqueira, J. J., Catania, C., Takashima, A., Sousa, N., & Almeida, O. F. X. (2008). Stress and glucocorticoid footprints in the brain- the path from depression to Alzheimer’s disease. Neuroscience and Biobehavioral Reviews, 32, 1161–1173.

    Article  CAS  PubMed  Google Scholar 

  • Sousa, N., Lukoyanov, N. V., Madeira, M. D., Almeida, O. F., & Paula-Barbosa, M. M. (2000). Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience, 97, 253–266.

    Article  CAS  PubMed  Google Scholar 

  • Srivareerat, M., Tran, T. T., Alzoubi, K. H., & Alkadhi, K. A. (2009). Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in β-amyloid rat model of Alzheimer’s disease. Biological Psychiatry, 65, 918–926.

    Article  CAS  PubMed  Google Scholar 

  • Sterlemann, V., Rammes, G., Wolf, M., Liebl, C., Ganea, K., Müller, M. B., et al. (2009) Chronic social stress during adolescence induces cognitive impairment in aged mice. Hippocampus (in press).

  • Stranahan, A. M., Arumugam, T. V., Cutler, R. G., Lee, K., Egan, J. M., & Mattson, M. P. (2008a). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nature Neuroscience, 11, 309–317.

    Article  CAS  PubMed  Google Scholar 

  • Stranahan, A. M., Lee, K., Becker, K. G., Zhang, Y., Maudsley, S., Martin, B., et al. (2008b). Hippocampal gene expression patterns underlying the enhancement of memory by running in aged mice. Neurobiol Aging (in press).

  • Stranahan, A. M., Lee, K., Martin, B., Maudsley, S., Golden, E., Cutler, R. G., et al. (2009). Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus (in press).

  • Stranahan, A. M., & Mattson, M. P. (2008). Impact of energy intake and expenditure on neuronal plasticity. Neuromolecular Medicine, 10, 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, P. G., Geiger, J. D., Mattson, M. P., & Scheff, S. W. (2000). Dietary supplement creatine protects against traumatic brain injury. Annals of Neurology, 48, 723–729.

    Article  CAS  PubMed  Google Scholar 

  • Tadavarty, R., Kaan, T. K., & Sastry, B. R. (2009). Long-term depression of excitatory synaptic transmission in rat hippocampal CA1 neurons following sleep-deprivation. Experimental Neurology, 216, 239–242.

    Article  CAS  PubMed  Google Scholar 

  • Tiba, P. A., Oliveira, M. G., Rossi, V. C., Tufik, S., & Suchecki, D. (2008). Glucocorticoids are not responsible for paradoxical sleep deprivation-induced memory impairments. Sleep, 31, 505–515.

    PubMed  Google Scholar 

  • Touma, C., Ambrée, O., Görtz, N., Keyvani, K., Lewejohann, L., Palme, R., et al. (2004). Age- and sex-dependent development of adrenocortical hyperactivity in a transgenic mouse model of Alzheimer’s disease. Neurobiology of Aging, 25, 893–904.

    Article  CAS  PubMed  Google Scholar 

  • Trimmer, P. A., Keeney, P. M., Borland, M. K., Simon, F. A., Almeida, J., Swerdlow, R. H., et al. (2004). Mitochondrial abnormalities in cybrid cell models of sporadic Alzheimer’s disease worsen with passage in culture. Neurobiology of Diseases, 15, 29–39.

    Article  CAS  Google Scholar 

  • Umegaki, H., Ikari, H., Nakahata, H., Endo, H., Suzuki, Y., Ogawa, O., et al. (2000). Plasma cortisol levels in elderly female subjects with Alzheimer’s disease: A cross-sectional and longitudinal study. Brain Research, 881, 241–243.

    Article  CAS  PubMed  Google Scholar 

  • Valla, J., Schneider, L., Niedzielko, T., Coon, K. D., Caselli, R., Sabbagh, M. N., et al. (2006). Impaired platelet mitochondrial activity in Alzheimer’s disease and mild cognitive impairment. Mitochondrion, 6, 323–330.

    Article  CAS  PubMed  Google Scholar 

  • van Praag, H. (2009). Exercise and the brain: Something to chew on. Trends in Neurosciences, 32, 283–290.

    Article  PubMed  CAS  Google Scholar 

  • van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030–1034.

    Article  PubMed  CAS  Google Scholar 

  • van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25, 8680–8685.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535–539.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, Y., Gould, E., Cameron, H. A., Daniels, D. C., & McEwen, B. S. (1992). Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus, 2, 431–436.

    Article  CAS  PubMed  Google Scholar 

  • Watson, D., & Clark, L. A. (1984). Negative affectivity: The disposition to experience aversive emotional states. Psychological Bulletin, 96, 465–490.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, A., Sutin, A. R., Duberstein, P. R., Friedman, B., Bagby, R. M., & Costa, P. T., Jr. (2009). The personality domains and styles of the five-factor model are related to incident depression in Medicare recipients aged 65 to 100. The American Journal of Geriatric Psychiatry, 17, 591–601.

    Article  PubMed  Google Scholar 

  • West, M. J., Coleman, P. D., Flood, D. G., & Troncoso, J. C. (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet, 344, 769–772.

    Article  CAS  PubMed  Google Scholar 

  • West, M. J., Kawas, C. H., Martin, L. J., & Troncoso, J. C. (2000). The CA1 region of the human hippocampus is a hot spot in Alzheimer’s disease. Annals of the New York Academy of Sciences, 908, 255–259.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, R. S., Arnold, S. E., Schneider, J. A., Kelly, J. F., Tang, Y., & Bennett, D. A. (2006). Chronic psychological distress and risk of Alzheimer’s disease in old age. Neuroepidemiology, 27, 143–153.

    Article  PubMed  Google Scholar 

  • Wilson, R. S., Arnold, S. E., Schneider, J. A., Li, Y., & Bennett, D. A. (2007). Chronic distress, age-related neuropathology, and late-life dementia. Psychosomatic Medicine, 69, 47–53.

    Article  PubMed  Google Scholar 

  • Wisor, J. P., Edgar, D. M., Yesavage, J., Ryan, H. S., McCormick, C. M., Lapustea, N., et al. (2005). Sleep and circadian abnormalities in a transgenic mouse model of Alzheimer’s disease: A role for cholinergic transmission. Neuroscience, 131, 375–385.

    Article  CAS  PubMed  Google Scholar 

  • Wolf, O. T. (2009). Stress and memory in humans: Twelve years of progress? Brain Research (in press).

  • Woolley, C. S., Gould, E., & McEwen, B. S. (1990). Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Research, 531, 225–231.

    Article  CAS  PubMed  Google Scholar 

  • Yao, Y. Y., Liu, D. M., Xu, D. F., & Li, W. P. (2007). Memory and learning impairment induced by dexamethasone in senescent but not young mice. European Journal of Pharmacology, 574, 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Yap, J. J., Takase, L. F., Kochman, L. J., Fornal, C. A., Miczek, K. A., & Jacobs, B. L. (2006). Repeated brief social defeat episodes in mice: Effects on cell proliferation in the dentate gyrus. Behavioural Brain Research, 172, 344–350.

    Article  PubMed  Google Scholar 

  • Yatin, S. M., Aksenov, M., & Butterfield, D. A. (1999). The antioxidant vitamin E modulates amyloid beta-peptide-induced creatine kinase activity inhibition and increased protein oxidation: Implications for the free radical hypothesis of Alzheimer’s disease. Neurochemical Research, 24, 427–435.

    Article  CAS  PubMed  Google Scholar 

  • Youngblood, B. D., Zhou, J., Smagin, G. N., Ryan, D. H., & Harris, R. B. (1997). Sleep deprivation by the “flower pot” technique and spatial reference memory. Physiology & Behavior, 61, 249–256.

    Article  CAS  Google Scholar 

  • Zafir, A., & Banu, N. (2009). Modulation of in vivo oxidative status by exogenous corticosterone and restraint stress in rats. Stress, 12, 167–177.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., McNeil, E., Dressler, L., & Siman, R. (2007). Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer’s disease. Experimental Neurology, 204, 77–87.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Zhang, F., & Zhang, Y. (2000). Corticosterone inhibits generation of long-term potentiation in rat hippocampal slice: Involvement of brain-derived neurotrophic factor. Brain Research, 885, 182–191.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported entirely by the Intramural Research Program of the NIH, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah M. Rothman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothman, S.M., Mattson, M.P. Adverse Stress, Hippocampal Networks, and Alzheimer’s Disease. Neuromol Med 12, 56–70 (2010). https://doi.org/10.1007/s12017-009-8107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-009-8107-9

Keywords

Navigation