Skip to main content

Advertisement

Log in

Regulation of miR-34 Family in Neuronal Development

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Differentiation of neural stem cells (NSC’s) to mature and functional neurons requires coordinated expression of mRNA, microRNAs (miRNAs) and regulatory proteins. Our earlier unbiased miRNA profiling studies have identified miR-200, miR-34 and miR-221/222 as maximally up-regulated miRNA families in differentiating PC12 cells and demonstrated the capability of miR-200 family in inducing neuronal differentiation (J. Neurochem, 2015, 133, 640–652). In present study, we have investigated role of miR-34 family in neuronal differentiation and identified P53 as mediator of nerve growth factor (NGF) induced miR-34a expression in differentiating PC12 cells. Our studies have shown that NGF induced miR-34a, arrests proliferating PC12 cells to G1 phase, which is pre-requisite for neuronal differentiation. Our studies have also shown that increased expression of miR-34a controls the P53 level in differentiated PC12 cells in feedback inhibition manner, which probably prevents differentiated cells from P53 induced apoptosis. Expression profiling of miR-34 family in different neuronal, non-neuronal and developing cells have identified differentiated and aged brain cells as richest source of miR-34, which also indicates that higher expression of miR-34 family helps in maintaining the mature neurons in non-proliferative stage. In conclusion, our studies have shown that miR-34 is brain enriched miRNA family, which up-regulates with neuronal maturation and brain ageing and co-operative regulation of P53 and miR-34a helps in neuronal differentiation by arresting cells in G1 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee E, Hu N, Yuan S, Cox LA, Bradley A, Lee W-H, Herrup K (1994) Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev 8(17):2008–2021

    Article  CAS  PubMed  Google Scholar 

  2. Galderisi U, Jori FP, Giordano A (2003) Cell cycle regulation and neural differentiation. Oncogene 22(33):5208–5219

    Article  CAS  PubMed  Google Scholar 

  3. Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20(4):327–348

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang Y, Ueno Y, Liu XS, Buller B, Wang X, Chopp M, Zhang ZG (2013) The microRNA-17–92 cluster enhances axonal outgrowth in embryonic cortical neurons. J Neurosci 33(16):6885–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kutty RK, Samuel W, Jaworski C, Duncan T, Nagineni CN, Raghavachari N, Wiggert B, Redmond TM (2010) MicroRNA expression in human retinal pigment epithelial (ARPE-19) cells: increased expression of microRNA-9 by N-(4-hydroxyphenyl) retinamide

  6. Santra M, Chopp M, Santra S, Nallani A, Vyas S, Zhang ZG, Morris DC (2016) Thymosin beta 4 up-regulates miR-200a expression and induces differentiation and survival of rat brain progenitor cells. J Neurochem 136(1):118–132

    Article  CAS  PubMed  Google Scholar 

  7. Singh T, Jauhari A, Pandey A, Singh P, Pant AB, Parmar D, Yadav S (2014) Regulatory triangle of neurodegeneration, adult neurogenesis and microRNAs. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 13(1):96–103

    Google Scholar 

  8. Yadav S, Jauhari A, Singh N, Singh T, Srivastav AK, Singh P, Pant A, Parmar D (2015) MicroRNAs are Emerging as Most Potential Molecular Biomarkers. Biochemistry & Analytical Biochemistry 2015

  9. Pandey A, Singh P, Jauhari A, Singh T, Khan F, Pant AB, Parmar D, Yadav S (2015) Critical role of the miR-200 family in regulating differentiation and proliferation of neurons. J Neurochem 133(5):640–652

    Article  CAS  PubMed  Google Scholar 

  10. Jauhari A, Singh T, Pandey A, Singh P, Singh N, Srivastava AK, Pant AB, Parmar D et al (2016) Differentiation induces dramatic changes in miRNA profile, where loss of dicer diverts differentiating SH-SY5Y cells toward senescence. Mol Neurobiol . doi:10.1007/s12035-016-0042-91-10

    PubMed  Google Scholar 

  11. Ko MH, Kim S, Hwang DW, Ko HY, Kim YH, Lee DS (2008) Bioimaging of the unbalanced expression of microRNA9 and microRNA9* during the neuronal differentiation of P19 cells. FEBS J 275(10):2605–2616

    Article  CAS  PubMed  Google Scholar 

  12. Dewing AS, Rueli RH, Robles MJ, Nguyen-Wu ED, Zeyda T, Berry MJ, Bellinger FP (2012) Expression and regulation of mouse selenoprotein P transcript variants differing in non-coding RNA. RNA Biol 9(11):1361–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death & Differentiation 17(2):193–199

    Article  CAS  Google Scholar 

  14. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H, Knyazev P, Diebold J et al (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7(16):2591–2600

    Article  CAS  PubMed  Google Scholar 

  15. Aranha MM, Santos DM, Solá S, Steer CJ, Rodrigues CM (2011) miR-34a regulates mouse neural stem cell differentiation. PLoS One 6(8):e21396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Okada N, Lin C-P, Ribeiro MC, Biton A, Lai G, He X, Bu P, Vogel H et al (2014) A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 28(5):438–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Culmsee C, Mattson MP (2005) p53 in neuronal apoptosis. Biochem Biophys Res Commun 331(3):761–777

    Article  CAS  PubMed  Google Scholar 

  18. Fulci G, Van Meir EG (1999) p53 and the CNS. Mol Neurobiol 19(1):61–77

    Article  CAS  PubMed  Google Scholar 

  19. Miller F, Pozniak C, Walsh G (2000) Neuronal life and death: an essential role for the p53 family. Cell Death & Differentiation 7(10):880–888

    Article  CAS  Google Scholar 

  20. Tedeschi A, Di Giovanni S (2009) The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Rep 10(6):576–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Molchadsky A, Rivlin N, Brosh R, Rotter V, Sarig R (2010) p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis 31(9):1501–1508

    Article  CAS  PubMed  Google Scholar 

  22. Choi J, Donehower L (1999) p53 in embryonic development: maintaining a fine balance. Cellular and Molecular Life Sciences CMLS 55(1):38–47

    Article  CAS  PubMed  Google Scholar 

  23. Danilova N, Sakamoto KM, Lin S (2008) p53 family in development. Mech Dev 125(11):919–931

    Article  CAS  PubMed  Google Scholar 

  24. Brynczka C, Labhart P, Merrick BA (2007) NGF-mediated transcriptional targets of p53 in PC12 neuronal differentiation. BMC Genomics 8(1):139

    Article  PubMed  PubMed Central  Google Scholar 

  25. Feng Z, Zhang C, Wu R, Hu W (2011) Tumor suppressor p53 meets microRNAs. J Mol Cell Biol 3(1):44–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hünten S, Siemens H, Kaller M, Hermeking H (2013) The p53/microRNA network in cancer: experimental and bioinformatics approaches. In: MicroRNA Cancer Regulation. Springer, pp 77–101

  27. Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12(9):613–626

    Article  CAS  PubMed  Google Scholar 

  28. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6(13):1586–1593

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460(7254):529–533

    Article  CAS  PubMed  Google Scholar 

  30. Yamakuchi M, Lowenstein CJ (2009) MiR-34, SIRT1, and p53: the feedback loop. Cell Cycle 8(5):712–715

    Article  CAS  PubMed  Google Scholar 

  31. Navarro F, Gutman D, Meire E, Cáceres M, Rigoutsos I, Bentwich Z, Lieberman J (2009) miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53. Blood 114(10):2181–2192

    Article  CAS  PubMed  Google Scholar 

  32. Pandey A, Jauhari A, Singh T, Singh P, Singh N, Srivastava AK, Khan F, Pant AB et al (2015) Transactivation of P53 by cypermethrin induced miR-200 and apoptosis in neuronal cells. Toxicology Research 4(6):1578–1586

    Article  CAS  Google Scholar 

  33. Yadav S, Pandey A, Shukla A, Talwelkar SS, Kumar A, Pant AB, Parmar D (2011) miR-497 and miR-302b regulate ethanol-induced neuronal cell death through BCL2 protein and cyclin D2. J Biol Chem 286(43):37347–37357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yadav S, Dhawan A, Seth PK, Singh RL, Parmar D (2006) Cytochrome P4503A: evidence for mRNA expression and catalytic activity in rat brain. Mol Cell Biochem 287(1–2):91–99

    Article  CAS  PubMed  Google Scholar 

  35. Liu N, Landreh M, Cao K, Abe M, Hendriks G-J, Kennerdell JR, Zhu Y, Wang L-S et al (2012) The microRNA miR-34 modulates ageing and neurodegeneration in drosophila. Nature 482(7386):519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rokavec M, Li H, Jiang L, Hermeking H (2014) The p53/miR-34 axis in development and disease. J Mol Cell Biol 6(3):214–230

    Article  CAS  PubMed  Google Scholar 

  37. Wu J, Bao J, Kim M, Yuan S, Tang C, Zheng H, Mastick GS, Xu C et al (2014) Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci 111(28):E2851–E2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mollinari C, Racaniello M, Berry A, Pieri M, De Stefano M, Cardinale A, Zona C, Cirulli F et al (2015) miR-34a regulates cell proliferation, morphology and function of newborn neurons resulting in improved behavioural outcomes. Cell Death Dis 6(1):e1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26(5):731–743

    Article  CAS  PubMed  Google Scholar 

  40. Welch C, Chen Y, Stallings R (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26(34):5017–5022

    Article  CAS  PubMed  Google Scholar 

  41. Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding for the work carried out in the present study has been provided by CSIR network projects InDepth (BSC0111) and Department of Biotechnology project (GAP-254). Mr. Abhishek Jauhari is grateful to UGC, New Delhi, and Ms. Tanisha Singh is grateful to Department of Science and Technology (DST), New Delhi for providing the research fellowships. The technical assistance of Mr. B S Pandey and Mr. Puneet Khare is also gratefully acknowledged. The CSIR-IITR communication reference number is 3417.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Yadav.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest with the contents of this article.

Additional information

Abhishek Jauhari and Tanisha Singh both author’s contributed equally

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jauhari, A., Singh, T., Singh, P. et al. Regulation of miR-34 Family in Neuronal Development. Mol Neurobiol 55, 936–945 (2018). https://doi.org/10.1007/s12035-016-0359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0359-4

Keywords

Navigation