Trends in Neurosciences
Volume 13, Issue 8, August 1990, Pages 312-318
Journal home page for Trends in Neurosciences

Viewpoint
Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus

https://doi.org/10.1016/0166-2236(90)90135-WGet rights and content

Abstract

Much of our present understanding of the cellular mechanisms of learning and memory derives from studies on the hippocampus in which long-term potentiation (LTP) of synaptic transmission is produced by a train of high-frequency electrical stimulation1 or by potassium channel blockers2. The hippocampus is also a seizure-prone region and recent studies have revealed that brief seizure episodes produce remarkably long-lasting changes which are reminiscent of ‘classical’ LTP3. A brief seizure episode also sets in motion a cascade of events that includes changes in gene expression, sprouting of fibres and the establishment of new synaptic contacts. This paper reviews this use-dependent structural rearrangement of the neuronal network and discusses its possible role in epilepsy and as a model of plasticity in the adult nervous system.

References (81)

  • C.W. Cotman et al.

    Trends Neurosci.

    (1987)
  • R.S. Neuman et al.

    Neurosci. Lett.

    (1988)
  • K. Stengaard-Pedersen et al.

    Brain Res.

    (1983)
  • N. Bousez-Dumesnil et al.

    Brain Res.

    (1989)
  • K.G. Baimbridge et al.

    Brain Res.

    (1982)
  • C.J. Frederickson et al.

    Brain Res.

    (1983)
  • L. Aniksztejn et al.

    Brain Res.

    (1987)
  • Y. Ben-Ari

    Neuroscience

    (1985)
  • J.R. Unnerstall et al.

    Eur. J. Pharmacol.

    (1983)
  • E. Tremblay et al.

    Brain Res.

    (1985)
  • A. Represa et al.

    Neuroscience

    (1987)
  • J.H. Robinson et al.

    Brain Res.

    (1981)
  • M. Gho et al.

    Brain Res.

    (1986)
  • G.L. Collingridge et al.

    Trends Neurosci.

    (1987)
  • S. Williams et al.

    Neuron

    (1989)
  • R.C. Malenka et al.

    Trends Neurosci.

    (1989)
  • E. Cherubini et al.

    Brain Res.

    (1988)
  • G.V. Goddard et al.

    Exp. Neurol.

    (1969)
  • N.T. Slater et al.

    Neurosci. Lett.

    (1985)
  • K. Sato et al.

    Brain Res.

    (1988)
  • A. Represa et al.

    Neurosci. Lett.

    (1989)
  • A. Represa et al.

    Neurosci. Lett.

    (1989)
  • J. Cronin et al.

    Brain Res.

    (1988)
  • G. Le Gal La Salle

    Neurosci. Lett.

    (1988)
  • Th. Popovici et al.

    Eur. J. Pharmacol.

    (1988)
  • J.I. Morgan et al.

    Trends Neurosci.

    (1989)
  • M. Dragunow

    Neurosci. Lett.

    (1989)
  • M.E. Schwab et al.

    Brain Res.

    (1979)
  • M.J. Katz

    Brain Res.

    (1986)
  • B.H. Gähwiler et al.

    Neurosci. Lett.

    (1987)
  • J.E. Springer et al.

    Brain Res. Bull.

    (1985)
  • T. Funabashi et al.

    Brain Res.

    (1988)
  • T.V.P. Bliss et al.

    J. Physiol. (London)

    (1973)
  • E. Cherubini et al.

    Nature

    (1987)
  • Y. Ben-Ari et al.

    J. Physiol. (London)

    (1988)
  • S.A. Bayer et al.

    Nature (London)

    (1973)
  • O.P. Ottersen et al.
  • I.L. Crawford et al.

    Nature

    (1973)
  • D.G. Amaral et al.

    J. Comp. Neurol.

    (1981)
  • T.H. Brown et al.

    J. Neurophysiol.

    (1983)
  • Cited by (0)

    View full text