Main article
Somatosensory evoked potentials from the thalamic sensory relay nucleus (VPL) in humans: correlations with short latency somatosensory evoked potentials recorded at the scalpPotentiels évoqués somatosensoriels du noyau de relais sensoriel thalamique (VPL) chez l'homme: corrélation avec des potentiels évoqués somatosensoriels à courte latence enregistrés sur le scalp

https://doi.org/10.1016/0168-5597(87)90026-8Get rights and content

Abstract

Somatosensory evoked potentials (SEPs) were recorded in humans from an electrode array which was implanted so that at least two electrodes were placed within the nucleus ventralis posterolateralis (VPL) of the thalamus and/or the medial lemniscus (ML) of the midbrain for therapeutic purposes. Several brief positive deflections (e.g., P11, P13, P14, P15, P16) followed by a slow negative component were recorded from the VPL. The sources of these components were differentiated on the basis of their latency, spatial gradient, and correlation with the sensory experience induced by the stimulation of each recording site. The results indicated that SEPs recorded from the VPL included activity volume-conducted from below the ML (P11), activity in ML fibers running through and terminating within the VPL (P13 and P14), activity in thalamocortical radiations originating in and running througn the VPL (P15, P16 and following positive components) and postsynaptic local activity (the negative component). The sources of the scalp-recorded SEPs were also analyzed on the basis of the timing and spatial gradients of these components. The results suggested that the scalp P11 was a potential volume-conducted from below the ML, the scalp P13 and P14 were potentials reflecting the activity of ML fibers, the small notches on the ascending slope on N16 may potentially reflect the activity of thalamocortical radiations, and N16 may reflect the sum of local postsynaptic activity occurring in broad areas of the brain-stem and thalamus.

Résumé

Des potentiels évoqués somatosensoriels (SEP) ont été enregistrés chez l'homme avec un réseau d'électrodes implantées de telle manière qu'au moins deux électrodes étaient situées dans le noyau ventralis posterolateralis (VPL) du thalamus et/ou dans le lemnisque médian (LM) du mésencéphale à des fins thérapeutiques. Plusieurs déflectionsf positives brèves (c.a.d. P11, P13, P14, P15, P16) suivies par une composante négative lente ont été enregistrées dans le VPL. Les sources de ces composantes ont été différenciées en tenant compte de leur latence, leur gradient spatial et la corrélation avec l'expérience sensorielle induite par la stimulation de chacun des sites d'enrigestrement. Les résultats indiquent que les SEP enregistrés dans le VPL comportent une activité conduite en volume à partir d'une zone plus profonde que le LM (P11), une autre se propageant dans les fibres du LM et aboutissant dans le VPL (P13 et P14), une autre encore dans les radiations thalamo-corticales prenant naissance et se propageant dans le VPL (P15, P16 et composantes positives suivantes) et enfin une activité locale postsynaptique (la composante négative). Les sources des SEP de scalp ont également été analysées en tenant compte de leur chronologie et de leur gradient spatial. Les résultats suggèrent que l'onde P11 de scalp est un potentiel conduit en volume venant d'en-dessous du LM, les ondes P13 and P14 de scalp sont un reflet de l'activité des fibres du LM, les petites encoches sur la phase ascendante de N16 pourraient refléter l'activité des radiations thalamocorticales et N16 serait l'image de la sommation de l'activité postysynaptique locale apparaissant dans de larges zones du tronc cérébral et du thalamus.

References (67)

  • I Hashimoto

    Somatosensory evoked potentials from the human brain-stem: origins of short latency potentials

    Electroenceph. clin. Neurophysiol.

    (1984)
  • A.L Hume et al.

    Conduction time in central somatosensory pathways in man

    Electroenceph. clin. Neurophysiol.

    (1978)
  • S.J Jones

    Short latency potentials recorded from the neck and scalp following median nerve stimulation in man

    Electroenceph. clin. Neurophysiol.

    (1977)
  • F Mauguière et al.

    Neural generators of N18 and P14 far-field somatosensory evoked potentials: patients with lesion of thalamus or thalamocortical radiations

    Electroenceph. clin. Neurophysiol.

    (1983)
  • T Nakanishi et al.

    The initial positive component of the scalp-recorded somatosensory evoked potential in normal subjects and in patients with neurological disorders

    Electroenceph. clin. Neurophysiol.

    (1978)
  • A Sances et al.

    Early somatosensory evoked potentials

    Electroenceph. clin. Neurophysiol.

    (1978)
  • I Suzuki et al.

    Intracranial recording of short latency somatosensory evoked potentials in man: identification of origin of each component

    Electroenceph. clin. Neurophysiol.

    (1984)
  • L Symon et al.

    Central conduction time as an index of ischemia in subarachnoid haemorrhage

    J. neurol. Sci.

    (1979)
  • U Thoden et al.

    Medial thalamic permanent electrodes for pain control in man: an electrophysiological and clinical study

    Electroenceph. clin. Neurophysiol.

    (1979)
  • T Tsubokawa et al.

    Thalamic relay nucleus stimulation for relief of intractable pain: clinical results and β-endorphin immunoreactivity in the cerebrospinal fluid

    Pain

    (1984)
  • S Tsuji et al.

    Subcortical, thalamic and cortical somatosensory evoked potentials to median nerve stimulation

    Electroenceph. clin. Neurophysiol.

    (1984)
  • W.C Wiederholt et al.

    Far field somatosensory potentials in the rat

    Electroenceph. clin. Neurophysiol.

    (1977)
  • T Yamada et al.

    Short latency somatosensory evoked potentials following median nerve stimulation in man

    Electroenceph. clin. Neurophysiol.

    (1980)
  • M Abbruzzese et al.

    New subcortical components of the cerebral somatosensory evoked potential in man

    Acta neurol. scand.

    (1978)
  • D Albe-Fessard et al.

    Simultaneous recordings in human thalamus and cortex of an early evoked component

    Appl. Neurophysiol.

    (1985)
  • P Andersen et al.

    Physiological Basis of the Alpha Rhythm

    (1968)
  • P Andersen et al.

    Inhibitory phasing of neuronal discharge

    Nature (Lond.)

    (1962)
  • B Anziska et al.

    Short latency somatosensory evoked potentials in brain dead patients

    Arch. Neurol. (Chic.)

    (1980)
  • C Baleydier et al.

    Projections of the ascending somesthetic pathways to the cat superior colliculus visualized by the horseradish peroxidase technique

    Exp. Brain Res.

    (1978)
  • D Bowsher

    The termination of secondary somatosensory neurons within the thalamus of Macaca mulatta: an experimental degeneration study

    J. comp. Neurol.

    (1961)
  • G.G Celesia

    Somatosensory evoked potentials recorded directly from human thalamus and SmI cortical area

    Arch. Neurol. (Chic.)

    (1979)
  • K.H Chiappa et al.

    Origins of the components of human short-latency somatosensory evoked responses (SER)

    Neurology (NY)

    (1979)
  • K.H Chiappa et al.

    Short latency somatosensory evoked potentials following median nerve stimulation in patients with neurological lesions

  • Cited by (78)

    • A new potential specifically marks the sensory thalamus in anaesthetised patients

      2019, Clinical Neurophysiology
      Citation Excerpt :

      This nucleus is partially surrounded by the anterior medial portion of the ventral caudate nucleus (V.c.); at some angles, a trajectory through the V.c. can be used to gain access to the Ce. DBS in the V.c. provides the opportunity to record somatosensory evoked potentials (SSEPs) from final DBS electrodes (Katayama and Tsubokawa, 1987; Hanajima et al, 2004a;) and microelectrode recordings (MERs) (Hanajima et al., 2004a). The V.c. response to electrical stimulation comprises two components (Klostermann et al., 2000; Klostermann et al., 2002; Hanajima et al., 2004a): a local field potential (LFP) and a very high frequency oscillation (VHFO) of approximately 1–1.5 kHz.

    • High test-retest-reliability of pain-related evoked potentials (PREP) in healthy subjects

      2017, Neuroscience Letters
      Citation Excerpt :

      In several studies of somatosensory evoked potentials [14,28,30] and laser-evoked-potentials (LEP) [4,20], differing potential components have been reported. While early potential sections were attributed to a thalamic activity [14], the mean components were interpreted as an activation of the somatosensory cortex and for the late parameters an influence of cognition, consciousness and attention could be shown [21,33]. These findings should be considered in further analyses of PREP and the corresponding evoked pain intensity during PREP recordings, for example in subsequent MRI or MEG studies.

    • Laser evoked potential recording from intracerebral deep electrodes

      2009, Clinical Neurophysiology
      Citation Excerpt :

      For instance, this proved useful in identifying thalamic SEP components. Indeed, after non-noxious somatosensory stimuli IC electrodes located within or close to the thalamus record a triphasic component (Tsuji et al., 1984; Tsuji et al., 1984; Suzuki and Mayanagi, 1984; Albe-Fessard et al., 1986; Katayama and Tsubokawa, 1987; Morioka et al., 1989; Insola et al., 1999, 2004), thought to represent a postsynaptic event due to the ventro–postero–lateral (VPL) neuron excitation by lemniscal afferents (Klostermann et al., 2002). In our patients, there are two main elements not to consider the potentials recorded by the deep IC electrodes as near-field potentials generated by subcortical structures.

    View all citing articles on Scopus

    This research was supported by Japan Education Ministry Grant 60480333.

    View full text