Elsevier

NeuroImage

Volume 61, Issue 4, 16 July 2012, Pages 1402-1418
NeuroImage

Within-subject template estimation for unbiased longitudinal image analysis

https://doi.org/10.1016/j.neuroimage.2012.02.084Get rights and content

Abstract

Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to the variability that is inherent in the available cross-sectional processing tools, to the introduction of bias in longitudinal processing and to potential over-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects.

Highlights

► We introduce unbiased longitudinal processing of brain MRI of several time points. ► We demonstrate that inerpolation asymmetries are not the only source of bias. ► We create a robust within-subject template to initialize all time points. ► Reliability is significantly increased, while over-regularization is avoided. ► Precision allows for smaller sample sizes in clinical trials to assess biomarkers.

Introduction

Progressive brain atrophy can be observed in a variety of neurodegenerative disorders. Several longitudinal studies have demonstrated a complex, regionally and temporally dynamic series of changes, that occur in normal aging and that are uniquely distinct in neurodegenerative disorders, such as Alzheimer's disease, Huntington's disease, and schizophrenia. The availability of large, high quality longitudinal datasets, has already begun to significantly expand our ability to evaluate selective, progressive anatomical changes. One of the major caveats in these studies is the use of tools that were originally designed for the analysis of data collected cross-sectionally. Inherent noise in cross-sectional methods, based on a single common template or atlas, often shadow individual differences and result in more heterogeneous measurements. However, by exploiting the knowledge that within-subject anatomical changes are usually significantly smaller than inter-individual morphological differences, it is possible to reduce within-subject noise without altering the between-subject variability. As such, the development of unbiased longitudinal analytical approaches are critical in fully elucidating phenotypic variability, and in the construction of imaging based biomarkers to quantify response in clinical trials and to evaluate disease modifying therapies. In particular, these tools can be expected to increase the sensitivity and reliability of the measurements sufficiently to require smaller sample sizes and fewer time points or shorter follow-up periods.

The novel longitudinal methodologies described in this paper are designed to overcome the most common limitations of contemporary longitudinal processing methods: the introduction of processing bias, over-regularization, and the limitation to process only two time points. In addition, building on FreeSurfer (Fischl, in press, Fischl et al., 2002), our methods are capable of producing a large variety of reliable imaging statistics, such as segmentations of subcortical structures, cortical parcellations, pialand white matter surfaces as well as cortical thickness and curvature estimates.

Longitudinal image processing aims at reducing within subject variability, by transferring information across time, e.g. enforcing temporal smoothness or informing the processing of later time points with results from earlier scans. These approaches, however, are susceptible to processing bias. It is well documented that especially interpolation asymmetries can influence downstream processing and subsequent analyses (Thompson and Holland, 2011, Yushkevich et al., 2010) and can result in severe underestimation of sample sizes due to overestimation of effect sizes. Interpolation asymmetries occur when, for example, resampling follow-up images to the baseline scan and thus smoothing only the follow-up images while keeping the baseline image untouched. As described in Reuter and Fischl (2011) and as demonstrated below, interpolation asymmetries are not the only source of bias. Consistently treating a single time point, usually baseline, differently from others, for instance, to construct an atlas registration or to transfer label maps for initialization purposes, can already be sufficient to introduce bias. Bias is a problem that often goes unnoticed, due to large measurement noise, imprecise methods, small sample sizes or insufficient testing. Not treating all time points the same can be problematic as the absence of bias cannot simply be proven by not finding it. Furthermore, the assumption that group effects are not (or only mildly) influenced by processing bias is usually incorrect. It is rather unlikely that bias affects all groups equally, considering that one group usually shows only little longitudinal change, while the other undergoes significant neurodegeneration. For these reasons, we carefully designed and implemented our longitudinal methods to treat all time points exactly the same. Another potential source of bias may be induced when constraining sequential results to be smooth. Temporal regularization can limit the power of an algorithm to detect large changes. We aim at avoiding this kind of over-regularization by initializing the processing in each time point with common information, but allowing the methods to evolve freely.

It should be noted, that different types of bias, not induced by the image analysis software but rather related to pre-processing or image acquisition steps, can already be present in the images, equally affecting both longitudinal and independent (cross-sectional) processing. Examples include the use of different scanner hardware, different scanner software versions, different calibration, acquisition parameters or protocols across time. These biases cannot easily be removed by downstream processing, although they can possibly be reduced. Other types of bias are related to intrinsic magnetic properties of the tissue (e.g. T1, T2*) across time (aging) or across groups (neurodegenerative disease) potentially introducing bias in measures of thickness or volume (Salat et al., 2009, Westlye et al., 2009). However, since age and disease level are usually very similar within-subject, the rate of change in a longitudinal study will be less affected than cross-sectional volume or thickness analysis.

In SIENA, Smith et al., 2001, Smith et al., 2002 introduced the idea of transforming two input images into a halfway space, to ensure both undergo the same resampling steps to avoid interpolation bias. However, traditionally, the baseline image is treated differently from the follow-up images. Often longitudinal processing is approached by employing higher order registration methods to compute and analyze the deformation field that aligns baseline to a follow-up scan, e.g. SPM2 uses high dimensional warps Ashburner et al. (2000)). These procedures are usually not inverse consistent and resample only the follow-up images. SPM, for example, has been employed in longitudinal studies of neurodegeneration in two time points (Chételat et al., 2005, Kipps et al., 2005) without specifically attempting to avoid asymmetry-related bias. The longitudinal segmentation algorithm CLASSIC (Xue et al., 2006) jointly segments a 4D image via longitudinal high-order warps to the baseline scan using an elastic warping algorithm. Also Avants et al. (2007) work in the baseline space as a reference frame. In that work, first a spatiotemporal parameterization of an individual's image time series is created via nonlinear registration (SyN). The underlying diffeomorphism is then resampled at the one year location and compared to baseline to quantify the annual atrophy. Qiu et al. (2006) present a method for longitudinal shape analysis of brain structures, quantifying deformations with respect to baseline and transporting the collected information from the subject baseline to a global template. Other authors focus on cortical measures. Han et al. (2006) describe a method to initialize follow-up surface reconstruction with surfaces constructed from the baseline scans. Li et al. (2010) register follow-up images to the baseline (rigidly and nonlinearly based on CLASSIC) and then keep the directions fixed across time along which they locally compute thickness in the cortex.

Over the last few years, several authors attempt to avoid processing bias. In 2009, initial software versions of our methods, relying on unbiased within-subject templates as described in this paper, were made publicly available (Reuter, 2009, Reuter et al., 2010a). Related efforts, however, aim primarily at removing only interpolation bias. Avants et al. (2010), for example, similarly utilize within-subject templates, while still treating the baseline image consistently differently from follow-up time points. Nakamura et al. (2011) avoid bias only in the registration procedure by combining forward and inverse linear registrations to construct symmetric pairwise maps. Also combining forward and backward transformations, Holland and Dale (2011) use a nonlinear pairwise registration and intensity normalization scheme to analyze the deformation in follow-up images by measuring volume changes of labels defined in baseline space.

In this work we present an automated longitudinal processing pipeline that is designed to enable a temporally unbiased evaluation of an arbitrary number of time points by treating all inputs the same. First an unbiased, within-subject template is generated by iteratively aligning all input images to a median image using a symmetric robust registration method (Reuter et al., 2010b). Because of the simultaneous co-registration of all time points, processing can be performed in a spatially normalized voxel space across time reducing variability of several procedures. Furthermore, the median image functions as a robust template approximating the subject's anatomy, averaged across time, and can be used as an estimate to initialize the subsequent segmentations.

Cortical and subcortical segmentation and parcellation procedures involve many complex nonlinear optimization problems, such as topology correction, nonlinear atlas registration, and nonlinear spherical surface registration. These nonlinear problems are typically solved with iterative methods. The final results can thus be sensitive to the selection of a particular starting point. However, by initializing the processing of a new data set in a longitudinal series with common information, the variations in the processing procedures can be efficiently reduced and the robustness and sensitivity of the overall longitudinal analysis significantly improved. Increased reliability often comes at the cost of over-regularization by enforcing temporal smoothness. Our methods do not add explicit constraints such as temporal smoothness or higher-order within-subject warps to transfer labels, nor do they incorporate the order of time points at all. Higher precision is achieved solely by common initialization while segmentation and surface reconstruction procedures are allowed to evolve freely. We demonstrate that the resulting measurements are significantly more reliable in both healthy controls (in test–retest, simulated noise and simulated atrophy) as well as in neurodegeneration studies. We show that the increased precision enables greater power to evaluate more subtle disease effects or to reduce sample sizes. This longitudinal processing stream is made available as part of FreeSurfer (Fischl, in press, Fischl et al., 2002, Reuter, 2009). The FreeSurfer software package is an open access resource that has gained popularity in evaluating cortical and subcortical measures.

An early version of the methods described in this paper has been successfully employed in a variety of studies analyzing progressive changes in Alzheimer's disease (Chiang et al., 2010, Chiang et al., 2011, Desikan et al., 2010, Sabuncu et al., 2011), Huntington's disease (Rosas et al., 2011), memory training (Engvig et al., 2010) and for the validation of prospective motion correction (Tisdall et al., in press). The Alzheimer's Disease Neuroimaging Initiative (ADNI), for instance, makes available2 their raw image data and derived measures, processed with the initial version of our longitudinal method (FS 4.4). ADNI is one of the largest publicly available longitudinal image data sets, consisting of more than 3000 scans, released with the goal to determine in-vivo biomarkers for the early detection of AD. Although our initial processing methods that were used for the derived measures are less powerful than the newer version presented in this paper, the available results are still of great importance to researchers without the possibility to locally process the raw images, as well as to function as a benchmark for method development and comparison (Holland et al., 2011).

Currently, large datasets such as ADNI are under consideration for other neurological diseases. As such, the highly sensitive, reliable and fully automated unbiased longitudinal methods described in this paper have the potential to help us understand natural progression of regionally and spatially selective neurodegeneration as occurs in distinct neurological disorders. The resulting, subject specific, morphometric measurements yield biomarkers that potentially serve as surrogate endpoints in clinical trials, where the increase of statistical power is of most immediate importance.

Section snippets

Overview of longitudinal processing pipeline

The proposed processing of longitudinal data consists of the following three steps:

  • 1.

    [CROSS]: First all time points of all subjects are processed independently. This is also called cross-sectional processing. Here a full image segmentation and surface reconstruction for each time point is constructed individually. Some of this information is needed later during the longitudinal processing and to construct the subject template in the next step.

  • 2.

    [BASE]: For each subject a template is created from

TT-115

Two different sets of test–retest data are analyzed below. The first set consists of 115 controls scanned twice within the same session and will be referred to as TT-115. Two full head scans (1 mm isotropic, T1-weighted multi-echo MPRAGE (van der Kouwe et al., 2008), Siemens TIM Trio 3T, TR 2530 ms, TI 1200 ms, multi echo with BW 650 Hz/px and TE = [1.64 ms, 3.5 ms, 5.36 ms, 7.22 ms], 2 × GRAPPA acceleration, total acq. time 5:54 min) were acquired using a 12 channel head coil and then gradient unwarped.

Conclusion

The robust subject template yields an initial unbiased estimate of the location of anatomical structures in a longitudinal scheme. We demonstrated that initializing processing of individual time points with common information from the subject template improves reliability significantly as compared to independent processing. Furthermore, our approach to treat all inputs the same removes asymmetry induced processing bias. This is important as the special treatment of a specific time point such as

Acknowledgments

Support for this research was provided in part by the National Center for Research Resources (P41RR14075, and the NCRR BIRN Morphometric Project BIRN002, U24RR021382), the National Institute for Biomedical Imaging and Bioengineering (R01EB006758), the National Institute on Aging (R01AG022381, U01AG024904), the National Institute for Neurological Disorders and Stroke (R01NS052585, R01NS042861, P01NS058793, R21NS072652, R01NS070963). Additional support was provided by The Autism & Dyslexia Project

References (65)

  • M. Jenkinson et al.

    Improved optimization for the robust and accurate linear registration and motion correction of brain images

    NeuroImage

    (2002)
  • K. Nakamura et al.

    CLADA: cortical longitudinal atrophy detection algorithm

    NeuroImage

    (2011)
  • B. Patenaude et al.

    A Bayesian model of shape and appearance for subcortical brain segmentation

    NeuroImage

    (2011)
  • M. Reuter et al.

    Avoiding asymmetry-induced bias in longitudinal image processing

    NeuroImage

    (2011)
  • M. Reuter et al.

    Highly accurate inverse consistent registration: a robust approach

    NeuroImage

    (2010)
  • D. Salat et al.

    Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast

    NeuroImage

    (2009)
  • I. Sharf et al.

    Arithmetic and geometric solutions for average rigid-body rotation

    Mech. Mach. Theory

    (2010)
  • S.M. Smith et al.

    Accurate, robust, and automated longitudinal and cross-sectional brain change analysis

    NeuroImage

    (2002)
  • W.K. Thompson et al.

    Bias in tensor based morphometry Stat-ROI measures may result in unrealistic power estimates

    NeuroImage

    (2011)
  • A. van der Kouwe et al.

    Brain morphometry with multiecho MPRAGE

    NeuroImage

    (2008)
  • L.T. Westlye et al.

    Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by adjustment for local variability in gray/white contrast: a multi-sample MRI study

    NeuroImage

    (2009)
  • Z. Xue et al.

    CLASSIC: consistent longitudinal alignment and segmentation for serial image computing

    NeuroImage

    (2006)
  • P.A. Yushkevich et al.

    Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: an illustration in ADNI 3 Tesla MRI data

    NeuroImage

    (2010)
  • J. Ashburner et al.

    Nonlinear spatial normalization using basis functions

    Hum. Brain Mapp.

    (1999)
  • J. Ashburner et al.

    Image registration using a symmetric prior—in three dimensions

    Hum. Brain Mapp.

    (2000)
  • B. Avants et al.

    Geodesic estimation for large deformation anatomical shape averaging and interpolation

    NeuroImage

    (2004)
  • B. Avants et al.

    Spatiotemporal normalization for longitudinal analysis of gray matter atrophy in frontotemporal dementia

  • B. Avants et al.

    Sparse unbiased analysis of anatomical variance in longitudinal imaging

  • D.A. Berry et al.

    Symmetrized percent change for treatment comparisons

    Am. Stat.

    (2006)
  • G.C. Chiang et al.

    Hippocampal atrophy rates and CSF biomarkers in elderly APOE2 normal subjects

    Neurology

    (2010)
  • G.C. Chiang et al.

    Identifying cognitively healthy elderly individuals with subsequent memory decline by using automated MR temporoparietal volumes

    Radiology

    (2011)
  • A. Collignon et al.

    Automated multi-modality image registration based on information theory

  • Cited by (1762)

    View all citing articles on Scopus
    1

    Senior authors.

    View full text