Skip to main content
Log in

Role of endogenous and exogenous antioxidants in the defence against functional damage and lipid peroxidation in rat liver mitochondria

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mitochondria are cellular organelles where the generation of reactive oxygen species may be high. They are, however, effectively protected by their high capacities of antioxidative systems, as enzymes and either water or lipid soluble low molecular weight antioxidants.

These antioxidative defence systems can be effectively regenerated after or during an oxidative stress as long as the mitochondria are in an energized state. Energization of mitochondria mainly depends on the availability of suitable respiratory substrates which can provide hydrogen for the reduction of either the glutathione- or α-tocopherol-system, since GSH is regenerated by glutathione reductase with the substrate NADPH and the α-tocopheroxyl-radical likely by reduced coenzyme Q. It was shown that mitochondria do not undergo damages as long as they can keep a high energy state. The delicate balance between prooxidative/antioxidative activities can be shifted towards oxidation, if experimentally prooxidants were added. After exhaustion of the antioxidative defence systems damages of rnitochondrial functions become expressed followed by membrane injuries along with the oxidation and degradation of mitochondrial lipids and proteins leading finally to the total degradation of the mitoc hondria.

Extramitochondrial antioxidants may assist the mitochondrial antioxidative defence systems in a complex way, whereby particularly ascorbic acid can act both as prooxidant and as antioxidant. (Mol Cell Biochem 174: 199–205, 1997)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Noack H: Untersuchungen zur Wechselbeziehung von energetischem Zustand und Wirksamkeit antioxidativer Schutzsysteme im Verlauf der Fe2+/Askorbat-induzierten Lipidperoxidation in Rattenlebermitochondrien. Thesis, 1994

  2. Wiswedel I, Trümper L, Schild L, Augustin W: Injury of mitochondrial respiration and membrane potential during iron/ascorbate-induced peroxidation. Biochim Biophys Acta 934: 80–86, 1988

    Google Scholar 

  3. Trümper L, Noack H, Augustin W: The role of mitochondrial glutathione in the defence against Fe2+/ascorbate induced peroxidation in rat liver mitochondria. Biomed Biochim Acta 48: 743–750, 1989

    Google Scholar 

  4. Noack H, Kube U, Augustin W: Relations between tocopherol depletion and coenzyme Q during lipid peroxidation in rat liver mitochondria. Free Rad Res 20: 375–386, 1993

    Google Scholar 

  5. Scott BC, Aruoma OI, Evans PJ, O'Neill C, Van der Vliet A, Cross C, Tritschler H, Halliwell B: Lipoic and dihydrolipoic acids as antioxidants. A critical evaluation. Rad Res 20: 119–133, 1993

    Google Scholar 

  6. Steinbrecht I, Kunz W: Anwendung der 'Cycling' – Technik zur stichprobenartigen, quantitativen Bestimmung des Reduktionsgrades des NAD-und NADP-Systems von Rattenlebermitochondrien bei kontinuierlich registrierenden Messungen. Acta Biol Med Germ 25: 731–747, 1970

    Google Scholar 

  7. Steinbrecht I, Augustin W: An improved modification of the Biuret method for the determination of protein in turbid materials with high lipid and hemoglobin content. Biomed Biochim Acta 42: 335–342, 1983

    Google Scholar 

  8. Lowry OH, Rosebrough NJ, Farr AL, Randal RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275, 1951

    Google Scholar 

  9. Buege JA, Aust SD: Microsomal lipid peroxidation. In: S Fleischer, L Packer (eds). Methods in Enzymology. Vol. 152. Academic Press, New York, 1978, pp 302–310

    Google Scholar 

  10. Esterbauer H, Cheeseman KH: Determination of aldehydic lipid peroxidation products: malondialdehyde and 4-hydroxynonenal. In: L Packer, AN Glazed (eds). Methods in Enzymology, Vol. 186. Academic Press, New York, 1990, pp 407–421

    Google Scholar 

  11. Noack H, Lorenz S, Wiswedel I, Augustin W: Aldehydbildung bei der Fe2+/Askorbat induzierten Peroxidation von Rattenlebermitochondrien. Wiss. Zeitschrift der Humboldt Universität zu Berlin 38: 60–72, 1989

    Google Scholar 

  12. Tietze F: Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: application to mammalian blood and other tissues. Anal Biochem 27: 502–522, 1969

    Google Scholar 

  13. Sies H, Summer KH: Hydroperoxide-metabolizing systems in the rat liver. Eur J Biochem 57: 503–512, 1975

    Google Scholar 

  14. Burton GW, Webb A, Ingold KU: A mild, rapid and efficient method of lipid extraction for use in determining vitamin E/lipid ratios. Lipids 20: 29–39, 1985

    Google Scholar 

  15. Kube U: Bestimmung der Gehalte von ?-Tocopherol und Coenzm Q9 und ihre Wechselwirkungen im Verlauf der Lipidperoxidation in Rattenlebermitochondrien. Thesis, 1994

  16. Trümper L, Hoffmann B, Wiswedel I, Augustin W: Impairment of the respiratory chain in the b-c1 region as early functional event during Fe2+/ascorbate induced peroxidation in rat liver mitochondria. Biomed Biochim Acta 47: 933–939, 1988

    Google Scholar 

  17. Hoffmann B: Zum Verhalten von Komponenten der Atmungskette wahrend einer Eisen/Askorbat-induzierten Peroxidation von Rattenlebermitochondrien. Thesis, 1991

  18. Schaegger H, von Jagow G: Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199: 223–231, 1991

    Google Scholar 

  19. Schaegger H, von Jagow G: Coomassie blue-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for direct visualization of polypeptides during electrophoresis. Anal Biochem 173: 201–205, 1987

    Google Scholar 

  20. Reinheckel T, Wiswedel I, Noack H, Augustin W: Electrophoretic evidence for the impairment of complexes of the respiratory chain during iron/ascorbate induced peroxidation in isolated rat liver mitochondria. Biochim Biophys Acta 1239: 45–50, 1995

    Google Scholar 

  21. Nishida T, Shibata H, Koseki M, Nakao K, Kawashima Y, Yoshida Y, Tagawa K: Peroxidative injury of the mitochondrial respiratory chain during reperfusion of hypothermic rat liver. Biochim Biophys Acta 890: 82–88, 1987

    Google Scholar 

  22. Hoek JB, Rydström J: Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem J 254: 1–10, 1988

    Google Scholar 

  23. Reichelt O: Lipidperoxidation in Rattenlebermitochondrien: Wirkungen von Askorbat, ?-Tocopherol und Dihydroliponsäure. Thesis, 1996

  24. Scholich H, Murphy ME, Sies H: Antioxidant activity of dihydrolipoate against microsomal lipid peroxidation and its dependence on α-tocopherol. Biochim Biophys Acta 1001: 256–261, 1989

    Google Scholar 

  25. Burkitt MJ, Gilbert BC: The control of iron-induced oxidative damage in isolated rat-liver mitochondria by respiration state and ascorbate. Free Rad Res Comms 5: 333–344, 1989

    Google Scholar 

  26. Miller DM, Aust SD: Studies of ascorbate-dependent, iron-catalyzed lipid peroxidation. Arch Biochem Biophys 1: 113–119, 1989

    Google Scholar 

  27. Grünewald RA: Ascorbic acid in the brain. Brain Res Rev 18: 123–133, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augustin, W., Wiswedel, I., Noack, H. et al. Role of endogenous and exogenous antioxidants in the defence against functional damage and lipid peroxidation in rat liver mitochondria. Mol Cell Biochem 174, 199–205 (1997). https://doi.org/10.1023/A:1006804423627

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006804423627

Navigation