Skip to main content
Log in

Structural and Functional Differences Between Glycosylated and Non-glycosylated Forms of Human Interferon-β (IFN-β)

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Two recombinant IFN-β products have been approved for the treatment of multiple sclerosis, a glycosylated form with the predicted natural amino acid sequence (IFN-β-la) and a non-glycosylated form that has a Met-1 deletion and a Cys-17 to Ser mutation (IFN-β-lb). The structural basis for activity differences between IFN-β-la and IFN-β-lb, is determined.

Methods. In vitro antiviral, antiproliferative and immunomodulatory assays were used to directly compare the two IFN-β products. Size exclusion chromatography (SEC), SDS-PAGE, thermal denaturation, and X-ray crystallography were used to examine structural differences.

Results. IFN-β- la was 10 times more active than IFN-β- Ib with specific activities in a standard antiviral assay of 20 × 107 lU/mg for IFN-β-la and 2 × 107 lU/mg for IFN-β-lb. Of the known structural differences between IFN-β-la and IFN-β-lb, only glycosylation affected in vitro activity. Deglycosylation of IFN-β-la produced a decrease in total activity that was primarily caused by the formation of an insoluble disulfide-linked IFN precipitate. Deglycosylation also resulted in an increased sensitivity to thermal denaturation. SEC data for IFN-β-lb revealed large, soluble aggregates that had reduced antiviral activity (approximated at 0.7 × 107 lU/mg). Crystallographic data for IFN-β-la revealed that the glycan formed H-bonds with the peptide backbone and shielded an uncharged surface from solvent exposure.

Conclusions. Together these results suggest that the greater biological activity of IFN-β-la is due to a stabilizing effect of the carbohydrate on structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. W. E. Stewart. The interferon system. Springer Verlag, New York (1981).

    Google Scholar 

  2. G. Sen and P. Lengyel. The interferon system: a bird's eye view of its biochemistry. J. Biol. Chem. 267:5017–5020 (1992).

    Google Scholar 

  3. G. Uze, G. Lutfalla, and K. E. Mogensen. Alpha and beta interferons and their friends and relations. J. Interferon Cytokine Res. 5:3–26 (1995).

    Google Scholar 

  4. M. Peters. Actions of cytokines on the immune response and viral interactons: an overview. Hepatology 23:909–916 (1996).

    Google Scholar 

  5. S.K. Tyring. Interferons: Biochemistry and mechanisms of action. Am. J. Obstet. Gynecol. 172:1350–1353 (1995).

    Google Scholar 

  6. B. Weinstock-Guttman, R. M. Ransohoff, R. P. Kinkel, and R. A. Rudick. The interferons: biological effects, mechanisms of action, and use in multiple sclerosis. Ann. Neurol. 37:7–13 (1995).

    Google Scholar 

  7. S. Baron, D. H. Coppenhaver, F. Dianzani, R. Fleischmann, T. K. Hughes Jr., G. R. Klimpel, D. W. Niesel, G. J. Stanton, and S. K. Tyring. Interferon: principles and medical applications. The University of Texas Medical Branch at Galveston; Dept. of Microbiology. Galveston, TX (1992).

    Google Scholar 

  8. L. D. Jacobs, D. L. Cookfair, R. A. Rudick, R. M. Herndon, J. R. Richert, A. M. Salazar, J/ S Fischer, D. E. Goodkin, C. V. Granger, J. H. Simon, J. J. Alam, D. M. Bartoszak, D. N. Bourdette, J. Braiman, C. M. Brownscheidle, M. E. Coats, S. L. Cohan, D. S. Dougherty, R. P. Kinkel, M. K. Mass, F. E. Munschauer, III, R. L. Priore, P. M. Pullicino, B. J. Scherokamn, B. Weinstock-Guttman, R. H. Whitham, and the Multiple Sclerosis Collaborative Research Group. Intramuscular interferon-beta-1a for disease progression in relapsing multiple sclerosis. Ann. Neurol. 39:285–294 (1996).

    Google Scholar 

  9. The IFNβ multiple sclerosis study group. Interferon-beta-1b is effective in relapsing-remitting multiple sclerosis. I. clinical results of a multicenter, randomized, double-blind, placebo controlled trial. Neurology 43:655–661 (1993).

    Google Scholar 

  10. Y. Kagawa, S. Takasaki, J. Utsumi, K. Hosoi, H. Shimizu, N. Kochibe, and A. Kobata. Comparative study of the asparagine-linked sugar chains of natural human interferon-β 1 and recombinant human interferon-β 1 produced by three different mammalian cells. J. Biol. Chem. 263:17508–17515 (1988).

    Google Scholar 

  11. R. Derynck, E. Remaut, E. Saman, P. Stanssens, E. De Clercq, J. Content, and W. Fiers. Expression of the human fibroblast interferon gene in Excherichia coli. Nature 287:193–197 (1980).

    Google Scholar 

  12. D. F. Mark, S. D. Lu, A. A. Creasey, R. Yamamoto, and L. S. Liu. Site-Specific mutagenesis of human fibroblast interferon gene. Proc. Natl. Acad. Sci. USA 81:5662–5666 (1984).

    Google Scholar 

  13. J. Alam, S. Goelz, P. Rioux, J. Scaramuccii, W. Jones, A. McAllister, M. Campion, and M. Rogge. Comparative pharmacokinetics and pharmacodynamic of two recombinant human interferon beta-1a (IFNβ-1a) Products Administered Intramuscularly in Healthy Male and Female Volunteers. Pharm. Res 4:546–549 (1997).

    Google Scholar 

  14. L. M. Jost, J. M. Kirkwood, and T. L. Whiteside. Inproved short-and long-term XTT-based colorimetric cellular cytotoxicity assay for melanoma and other tumor cells. J. Immunol. Meth. 147:153–165 (1992).

    Google Scholar 

  15. P. P. Wingfield, G. Graber, N. R. Trucatti, M. Movva, S. Pelletier, Craig, K. Rose, and C. G. Miller. Purification and characterization of a methionine specific aminopeptidase from Salmonella Typhimurium. Eur. J. Biochem. 180:23–32 (1989).

    Google Scholar 

  16. H. S. Conradt, H. Egge, J. Peter-Katalinic, W. Reiser, T. Siklosi, and K. Schaper. Structure of the carbohydrate moiety of human interferon beta secreted by a recombinant Chinese hamster ovary cell line. J. Biol. Chem. 262:14600–14605 (1987).

    Google Scholar 

  17. M. Karpusas, M. Nolte, C. B. Benton, W. Meier, W. N. Lipscomb, and S. E. Goelz. The crystal structure of human interferon-β at 2.2 Å resolution. Proc. Natl. Acad. Sci. USA 94: 11813–11818 (1997).

    Google Scholar 

  18. N. J. Murgolo, W. T. Windsor, A. Hruza, P. Reichert, A. Tsarbopoulos, S. Baldwin, E. Huang, B. Pramanik, S. Ealick, and P. P. Trotta. A homology model of human interferon α-2. Proteins: Struc., Func., Gen. 17:62–74 (1993).

    Google Scholar 

  19. T. Senda, S. Saitoh, and Y. Mitsui. Refined crystal structure of recombinant murine Interferon-β at 2.15 Å resolution. J. Mol. Biol. 253:187–207 (1995).

    Google Scholar 

  20. R. Radhakrishnan, L. J. Walter, A. Hruza, P. Reichert, P. P. Trotta, T. L. Nagabhushan, and M. R. Walter. Zinc mediated dimer of human interferon-α2b revealed by x-ray crystallography. Structure 4:1453–1463 (1996).

    Google Scholar 

  21. Y. Mitsui, T Senda, T. Shimazu, S. Matsuda, and J. Utsumi. Structural, Functional and enolutionary implications of the three-demensional crystal structure of murine interferon beta. Pharmacol. Ther. 58:93–132 (1993).

    Google Scholar 

  22. T. W. Rademacher, R. B. Parekh, and R. A. Dwek. Glycobiology. Ann. Rev. Biochem. 57:785–838 (1988).

    Google Scholar 

  23. J. C. Paulson. Glycoproteins: What are the sugar chains for? Trends Biochem. Sci. 14:272–276 (1989).

    Google Scholar 

  24. H. Lis and N. Sharon. Protein glycosylation: structural and functional aspects. Eur. J. Biochem. 218:1–27 (1993).

    Google Scholar 

  25. C. Wang, M. Eufemi, C. Truano, and A. Giartosio. Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry 35:7299–7307 (1996).

    Google Scholar 

  26. S. E. O'Connor and B. Imperiali. Modulation of protein structure and function by asparagine-linked glycosylation. Chem. and Biol. 3:803–812 (1996).

    Google Scholar 

  27. Y. Watanabe and Y. Kawade. Properties of non-glycoslated human interferon-β from MG63 cells. J. Gen. Virol. 64:1391–1395 (1983).

    Google Scholar 

  28. R. Gibson, S. Schlesinger, and S. Kornfeld. The non-glycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J. Biol. Chem. 254:3600–3607 (1979).

    Google Scholar 

  29. S. Dube, J. W. Fisher, and J. S. Powell. Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion and biological function. J. Biol. Chem. 263:17516–17521 (1988).

    Google Scholar 

  30. D. T. W. Ng, S. W. Hiebert, and R. A. Lamb. Different roles of individual N-linked oligosaccharide chains in folding, assembly, and transport of the simian virus 5 hemmagglutinin-neuraminidase. Mol. Cell. Biol. 10:1989–2001 (1990).

    Google Scholar 

  31. D. Davis, X. Liu, and D. L. Segaloff. Identification of the sites of N-linked glycoslyation on the follicle-stimulating hormone (FSH) receptor and assessment of their role in FSH receptor function. Mol. Endo. 9:159–170 (1995).

    Google Scholar 

  32. M. E. Mathieu, P. R. Grigera, A. Helenius, and R. R. Wagner. Folding, unfolding and refolding of the vesicular stomatitis virus glycoprotein. Biochemistry 35:4084–4093 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Runkel, L., Meier, W., Pepinsky, R.B. et al. Structural and Functional Differences Between Glycosylated and Non-glycosylated Forms of Human Interferon-β (IFN-β). Pharm Res 15, 641–649 (1998). https://doi.org/10.1023/A:1011974512425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011974512425

Navigation