Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression

Abstract

Mutations of mitochondrial DNA (mtDNA) cause several well-recognized human genetic syndromes with deficient oxidative phosphorylation1,2,3,4 and may also have a role in ageing and acquired diseases of old age5. We report here that hallmarks of mtDNA mutation disorders can be reproduced in the mouse using a conditional mutation strategy to manipulate the expression of the gene encoding mitochondrial transcription factor A ( Tfam , previously named mtTFA), which regulates transcription and replication of mtDNA (Refs 6,7 ). Using a loxP -flanked Tfam allele ( TfamloxP; ref. 8 ) in combination with a cre -recombinase transgene under control of the muscle creatinine kinase promoter9,10, we have disrupted Tfam in heart and muscle. Mutant animals develop a mosaic cardiac-specific progressive respiratory chain deficiency, dilated cardiomyopathy, atrioventricular heart conduction blocks and die at 2-4 weeks of age. This animal model reproduces biochemical, morphological and physiological features of the dilated cardiomyopathy of Kearns-Sayre syndrome1,2,3,4. Furthermore, our findings provide genetic evidence that the respiratory chain is critical for normal heart function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular characterization of protein and mitochondrial transcript levels and measurement of respiratory chain function in mutant animals and controls.
Figure 2: Survival, patterns of cre-loxP recombination and cardiac phenotype in mutant mice.
Figure 3: Morphological analysis of myocardium from mutant and littermate control animals at 3–4 weeks of age.
Figure 4: ECG findings and echocardiography of mutant and littermate control animals at age 3-5 weeks.

Similar content being viewed by others

References

  1. Larsson, N.G. & Clayton, D.A. Molecular genetic aspects of human mitochondrial disorders. Annu. Rev. Genet. 29, 151–178 (1995).

    Article  CAS  Google Scholar 

  2. Schon, E.A., Hirano, M. & DiMauro, S. Mitochondrial encephalomyopathies: clinical and molecular analysis. J. Bioenerg. Biomembr. 26, 291 –299 (1995).

    Article  Google Scholar 

  3. Munnich, A. et al. Clinical presentations and laboratory investigations in respiratory chain deficiency. Eur. J. Pediatr. 155, 262–274 (1996).

    Article  CAS  Google Scholar 

  4. Lightowlers, R.N., Chinnery, P.F., Turnbull, D.M. & Howell, N. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet. 13, 450–455 (1997).

    Article  CAS  Google Scholar 

  5. Wallace, D.C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256, 628–632 ( 1992).

    Article  CAS  Google Scholar 

  6. Clayton, D.A. Replication and transcription of vertebrate mitochondrial DNA. Annu. Rev. Cell Biol. 7, 453–478 (1991).

    Article  CAS  Google Scholar 

  7. Parisi, M.A. & Clayton, D.A. Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252, 965–969 ( 1991).

    Article  CAS  Google Scholar 

  8. Larsson, N.G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nature Genet. 18, 231–236 (1998).

    Article  CAS  Google Scholar 

  9. Lyons, G.E. et al. Developmental regulation of creatine kinase gene expression by myogenic factors in embryonic mouse and chick skeletal muscle. Development 113, 1017–1029 (1991).

    CAS  PubMed  Google Scholar 

  10. Trask, R.V. & Billadello, J.J. Tissue-specific distribution and developmental regulation of M and B creatine kinase mRNAs. Biochim. Biophys. Acta 1049, 182–188 (1990).

    Article  CAS  Google Scholar 

  11. Grove, D., Zak, R., Nair, K.G. & Aschenbrenner, V. Biochemical correlates of cardiac hypertrophy IV. Observations on the cellular organization of growth during myocardial hypertrophy in the rat. Circ. Res. 25, 473–485 ( 1969).

    Article  CAS  Google Scholar 

  12. Zak, R. Development and proliferative capacity of cardiac muscle cells. Circ. Res. 35, (suppl. II), 17–26 (1974).

    CAS  Google Scholar 

  13. Moore, G.W., Hutchins, G.M., Bulkley, B.H., Tseng, J.S. & Ki, P.F. Constituents of the human ventricular myocardium: connective tissue hyperplasia accompanying muscular hypertrophy. Am. Heart J. 100, 610– 616 (1980).

    Article  CAS  Google Scholar 

  14. Li, Y.B. et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genet. 11, 376–381 (1995).

    Article  CAS  Google Scholar 

  15. Graham, B.H. et al. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nature Genet. 16, 226– 234 (1997).

    Article  CAS  Google Scholar 

  16. Hayashi, J.-I. et al. Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc. Natl Acad. Sci. USA 88, 10614– 10618 (1991).

    Article  CAS  Google Scholar 

  17. Shoubridge, E.A., Karpati, G. & Hastings, K.E.M. Deletion mutants are functionally dominant over wild-type mitochondrial genomes in skeletal muscle fiber segments in mitochondrial disease. Cell 62, 43–49 (1990).

    Article  CAS  Google Scholar 

  18. Moraes, C.T. et al. Molecular analysis of the muscle pathology associated with mitochondrial DNA deletions. Nature Genet. 1, 359–367 (1992).

    Article  CAS  Google Scholar 

  19. Oldfors, A. et al. Mitochondrial DNA deletions and cytochrome c oxidase deficiency in muscle fibres. J. Neurol. Sci. 110, 169–177 (1992).

    Article  CAS  Google Scholar 

  20. Connor, M.K., Takahashi, M. & Hood, D.A. Tissue-specific stability of nuclear- and mitochondrially encoded mRNAs. Arch. Biochem. Biophys. 333, 103–108 (1996).

    Article  CAS  Google Scholar 

  21. Larsson, N.G., Holme, E., Kristiansson, B., Oldfors, A. & Tulinius, M. Progressive increase of the mutated mitochondrial DNA fraction in Kearns-Sayre syndrome. Pediatr. Res. 28, 131–136 ( 1990).

    Article  CAS  Google Scholar 

  22. Larsson, N.G. et al. Segregation and manifestations of the mtDNA tRNALys A→G(8344) mutation of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am. J. Hum. Genet. 51, 1201–1212 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Weber, K. et al. A new mtDNA mutation showing accumulation with time and restriction to skeletal muscle. Am. J. Hum. Genet. 60, 373–380 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Müller-Höcker, J. et al. In situ hybridization of mitochondrial DNA in the heart of a patient with Kearns-Sayre syndrome and dilatative cardiomyopathy. Hum. Pathol. 23, 1431–1437 (1992).

    Article  Google Scholar 

  25. Berenberg, R.A. et al. Lumping or splitting? "Ophthalmoplegia-plus" or Kearns-Sayre syndrome? Ann. Neurol. 1, 37– 54 (1977).

    Article  CAS  Google Scholar 

  26. Rustin, P. et al. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta 228, 35– 51 (1994).

    Article  CAS  Google Scholar 

  27. Hakulinen, T. & Tenkanen, L. Regression analysis of relative survival rates. Appl. Stat. 36, 309– 317 (1987).

    Article  Google Scholar 

  28. Axenborg, J.E. & Hirsch, I. A PC-based on-line system for physiological in vivo and in vitro experiments. Comput. Methods Programs Biomed. 41, 55– 67 (1993).

    Article  CAS  Google Scholar 

  29. Hoit, B.D., Khoury, S.F., Kranias, E.G., Ball, N. & Walsh, R.A. In vivo echocardiographic detection of enhanced left ventricular function in gene-targeted mice with phospholamban deficiency. Circ. Res. 77, 632–637 (1995).

    Article  CAS  Google Scholar 

  30. Johansson, C. & Thoren, P. The effects of triiodothyronine (T3) on heart rate, temperature and ECG measured with telemetry in freely moving mice. Acta Physiol. Scand. 160, 133– 138 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.-G.L. is supported by grants from Pharmacia-Upjohn, Swedish Medical Research Council (K98-13X-12197-02B, K98-13P-12204-02B), Magn. Bergvalls Stiftelse, Harald Jeanssons Stiftelse and Ronald McDonald Barnfond. A.O. is supported by a grant from the Swedish Medical Research Council (K97-12X-07122-12C). D.A.C. is supported by a grant from the National Institute of General Medical Sciences (R37-GM33088-28). G.S.B. is a Howard Hughes Medical Institute Associate Investigator. H.W. was supported by stipends from Drottning Silvias Barnfond and Samariten. P.T. is supported by grants from Swedish Medical Research Council (K98-14X-4764-20B) and Swedish Heart and Lung Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils-Göran Larsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Wilhelmsson, H., Graff, C. et al. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21, 133–137 (1999). https://doi.org/10.1038/5089

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5089

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing